CIGALEMC: GALAXY PARAMETER ESTIMATION USING A MARKOV CHAIN MONTE CARLO APPROACH WITH CIGALE

被引:78
|
作者
Serra, Paolo [1 ]
Amblard, Alexandre [1 ]
Temi, Pasquale [1 ]
Burgarella, Denis [2 ]
Giovannoli, Elodie [2 ]
Buat, Veronique [2 ]
Noll, Stefan [3 ]
Im, Stephen [1 ]
机构
[1] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA
[2] Observ Astron Marseille Provence, F-13388 Marseille 13, France
[3] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria
来源
ASTROPHYSICAL JOURNAL | 2011年 / 740卷 / 01期
关键词
galaxies: fundamental parameters; methods: data analysis; SPECTRAL ENERGY-DISTRIBUTIONS; STELLAR POPULATION SYNTHESIS; STAR-FORMING GALAXIES; INFRARED-EMISSION; STARBURST GALAXIES; EXTINCTION CURVES; INTERSTELLAR DUST; ULTRAVIOLET; EVOLUTION; MODELS;
D O I
10.1088/0004-637X/740/1/22
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a fast Markov Chain Monte Carlo (MCMC) exploration of the astrophysical parameter space using a modified version of the publicly available code Code Investigating GALaxy Emission (CIGALE). The original CIGALE builds a grid of theoretical spectral energy distribution (SED) models and fits to photometric fluxes from ultraviolet to infrared to put constraints on parameters related to both formation and evolution of galaxies. Such a grid-based method can lead to a long and challenging parameter extraction since the computation time increases exponentially with the number of parameters considered and results can be dependent on the density of sampling points, which must be chosen in advance for each parameter. MCMC methods, on the other hand, scale approximately linearly with the number of parameters, allowing a faster and more accurate exploration of the parameter space by using a smaller number of efficiently chosen samples. We test our MCMC version of the code CIGALE (called CIGALEMC) with simulated data. After checking the ability of the code to retrieve the input parameters used to build the mock sample, we fit theoretical SEDs to real data from the well-known and -studied Spitzer Infrared Nearby Galaxy Survey sample. We discuss constraints on the parameters and show the advantages of our MCMC sampling method in terms of accuracy of the results and optimization of CPU time.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    [J]. IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [2] Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation
    Henriques, Bruno M. B.
    Thomas, Peter A.
    Oliver, Seb
    Roseboom, Isaac
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (01) : 535 - 547
  • [3] Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo
    van der Sluys, Marc
    Raymond, Vivien
    Mandel, Ilya
    Roever, Christian
    Christensen, Nelson
    Kalogera, Vicky
    Meyer, Renate
    Vecchio, Alberto
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (18)
  • [4] Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model
    Jensen, Anders Chr.
    Ditlevsen, Susanne
    Kessler, Mathieu
    Papaspiliopoulos, Omiros
    [J]. PHYSICAL REVIEW E, 2012, 86 (04):
  • [5] Probabilistic parameter estimation of activated sludge processes using Markov Chain Monte Carlo
    Sharifi, Soroosh
    Murthy, Sudhir
    Takacs, Imre
    Massoudieh, Arash
    [J]. WATER RESEARCH, 2014, 50 : 254 - 266
  • [6] Parameter Estimation of an Electrohydraulic Servo System Using a Markov Chain Monte Carlo Method
    Liu, Junhong
    Wu, Huapeng
    Handroos, Heikki
    Haario, Heikki
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (01):
  • [7] An Improved Markov Chain Monte Carlo Scheme for Parameter Estimation Analysis
    Liu, Fang
    Pan, Hao
    Jiang, Desheng
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 702 - +
  • [8] Parameter estimation by a Markov chain Monte Carlo technique for the Candy model
    Descombes, X
    van Lieshout, MNM
    Stoica, R
    Zerubia, J
    [J]. 2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 22 - 25
  • [9] Parameter Estimation in Continuous Time Markov Switching Models: A Semi-Continuous Markov Chain Monte Carlo Approach
    Hahn, Markus
    Sass, Joern
    [J]. BAYESIAN ANALYSIS, 2009, 4 (01): : 63 - 84
  • [10] Markov chain Monte Carlo methods for parameter estimation of the modified Weibull distribution
    Jiang, H.
    Xie, M.
    Tang, L. C.
    [J]. JOURNAL OF APPLIED STATISTICS, 2008, 35 (06) : 647 - 658