On the physics of propagating Bessel modes in cylindrical waveguides

被引:15
|
作者
Gomez-Correa, J. E. [1 ,2 ]
Balderas-Mata, S. E. [3 ]
Coello, V. [2 ]
Puente, N. P. [1 ]
Rogel-Salazar, J. [4 ,5 ]
Chavez-Cerda, S. [6 ,7 ]
机构
[1] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, Nuevo Leon 66451, Mexico
[2] Ctr Invest Cient & Educ Super Ensenada, Unidad Monterrey, Nuevo Leon 66629, Mexico
[3] Univ Guadalajara, Dept Elect, Guadalajara 44840, Jalisco, Mexico
[4] Univ Hertfordshire, Sch Phys Astron & Math, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England
[5] Imperial Coll London, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2BZ, England
[6] Inst Nacl Astrofis Opt & Electr, Dept Opt, Apdo Postal 51-216, Puebla, Mexico
[7] Ctr Invest Opt, Leon 37150, Gto, Mexico
关键词
D O I
10.1119/1.4976698
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this paper, we demonstrate that by using a mathematical physics approach-focusing attention on the physics and using mathematics as a tool-it is possible to visualize the formation of the transverse modes inside a cylindrical waveguide. The opposite (physical mathematics) approach looks at the mathematical problem and then tries to impose a physical interpretation. For cylindrical waveguides, the physical mathematics route leads to the Bessel differential equation, and it is argued that in the core of the waveguide there are only Bessel functions of the first kind in the description of the transverse modes. The Neumann functions are deemed non-physical due to their singularity at the origin and are eliminated from the final description of the solution. In this paper, by combining geometric optics and wave optics concepts, we show that the inclusion of the Neumann function is physically necessary to describe fully and properly the formation of the propagating transverse modes. With this approach, we also show that the field outside a dielectric waveguide arises in a natural way. (C) 2017 American Association of Physics Teachers.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 50 条
  • [1] Coupling of low-order LP modes propagating in cylindrical waveguides into whispering gallery modes in microspheres
    Adamovsky, G.
    Wrbanek, S.
    OPTICS EXPRESS, 2013, 21 (02): : 2279 - 2286
  • [2] The existence and evolution of fast-decaying Bessel modes in cylindrical hollow waveguides and in free space
    Nyitray, G.
    Nagyyaradi, A.
    Koniorczyk, M.
    JOURNAL OF MODERN OPTICS, 2019, 66 (18) : 1784 - 1795
  • [3] Trapped modes in cylindrical waveguides
    Linton, C.M.
    McIver, M.
    Quarterly Journal of Mechanics and Applied Mathematics, 1998, 51 (pt 3): : 389 - 412
  • [4] Trapped modes in cylindrical waveguides
    Linton, CM
    McIver, M
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1998, 51 : 389 - 412
  • [5] A semi-analytical model for predicting multiple propagating axially symmetric modes in cylindrical waveguides
    Puckett, AD
    Peterson, ML
    ULTRASONICS, 2005, 43 (03) : 197 - 207
  • [6] Propagating modes in subwavelength cylindrical holes
    Catrysse, PB
    Shin, H
    Fan, SH
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2005, 23 (06): : 2675 - 2678
  • [7] Inscription of Cylindrical and Planar Waveguides with Ultrafast Bessel Beams
    Zambon, Veronique
    McCarthy, Nathalie
    Piche, Michel
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 2718 - +
  • [8] Efficient generation of truncated Bessel beams using cylindrical waveguides
    Ilchenko, Vladimir S.
    Mohageg, Makan
    Savchenkov, Anatoliy A.
    Matsko, Andrey B.
    Maleki, Lute
    OPTICS EXPRESS, 2007, 15 (09) : 5866 - 5871
  • [9] Efficient generation of truncated Bessel beams using cylindrical waveguides
    Ilchenko, Vladimir S.
    Mohageg, Makan
    Matsko, Andrey B.
    Savchenkov, Anatoliy A.
    Maleki, Lute
    LASER RESONATORS AND BEAM CONTROL IX, 2007, 6452
  • [10] Modes analyses of cylindrical waveguides using the MFCM
    Wang, Kai
    Yu, Feng-Qi
    Liang, Teng
    Zhang, Qingfeng
    Zhang, Qinyu
    Laurin, Jean-Jacques
    Wu, Ke
    ELECTRONICS LETTERS, 2021, 57 (25) : 980 - 982