On the physics of propagating Bessel modes in cylindrical waveguides

被引:15
|
作者
Gomez-Correa, J. E. [1 ,2 ]
Balderas-Mata, S. E. [3 ]
Coello, V. [2 ]
Puente, N. P. [1 ]
Rogel-Salazar, J. [4 ,5 ]
Chavez-Cerda, S. [6 ,7 ]
机构
[1] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, Nuevo Leon 66451, Mexico
[2] Ctr Invest Cient & Educ Super Ensenada, Unidad Monterrey, Nuevo Leon 66629, Mexico
[3] Univ Guadalajara, Dept Elect, Guadalajara 44840, Jalisco, Mexico
[4] Univ Hertfordshire, Sch Phys Astron & Math, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England
[5] Imperial Coll London, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2BZ, England
[6] Inst Nacl Astrofis Opt & Electr, Dept Opt, Apdo Postal 51-216, Puebla, Mexico
[7] Ctr Invest Opt, Leon 37150, Gto, Mexico
关键词
D O I
10.1119/1.4976698
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this paper, we demonstrate that by using a mathematical physics approach-focusing attention on the physics and using mathematics as a tool-it is possible to visualize the formation of the transverse modes inside a cylindrical waveguide. The opposite (physical mathematics) approach looks at the mathematical problem and then tries to impose a physical interpretation. For cylindrical waveguides, the physical mathematics route leads to the Bessel differential equation, and it is argued that in the core of the waveguide there are only Bessel functions of the first kind in the description of the transverse modes. The Neumann functions are deemed non-physical due to their singularity at the origin and are eliminated from the final description of the solution. In this paper, by combining geometric optics and wave optics concepts, we show that the inclusion of the Neumann function is physically necessary to describe fully and properly the formation of the propagating transverse modes. With this approach, we also show that the field outside a dielectric waveguide arises in a natural way. (C) 2017 American Association of Physics Teachers.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 50 条
  • [41] Impact of thin AgI coatings on modes in cylindrical metallic waveguides for THz applications
    Navarro-Cia, Miguel
    Bledt, Carlos M.
    Melzer, Jeffrey
    Vitiello, Miriam S.
    Beere, Harvey E.
    Ritchie, David A.
    Harrington, James A.
    Mitrofanov, Oleg
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [42] MINKOWSKI BESSEL MODES
    GERLACH, UH
    PHYSICAL REVIEW D, 1988, 38 (02): : 514 - 521
  • [43] Asymmetric Bessel modes
    Kotlyar, V. V.
    Kovalev, A. A.
    Soifer, V. A.
    OPTICS LETTERS, 2014, 39 (08) : 2395 - 2398
  • [44] Enlarging the bandwidth of nanoscale propagating plasmonic modes in deep-subwavelength cylindrical holes
    Catrysse, Peter B.
    Fan, Shanhui
    APPLIED PHYSICS LETTERS, 2007, 91 (18)
  • [45] Spectrogram analysis of circumferential modes propagating around the circular cylindrical shell immersed in water
    Laaboubi, M.
    Dliou, A.
    Latif, R.
    Aassif, E.
    Maze, G.
    Canadian Acoustics - Acoustique Canadienne, 2012, 40 (04): : 13 - 22
  • [46] Propagating transverse electric and transverse magnetic modes in liquid crystal-clad planar waveguides
    Kolacz, Jakub
    Gotjen, Henry G.
    Bekele, Robel Y.
    Myers, Jason D.
    Frantz, Jesse A.
    Ziemkiewicz, Michael
    Spilimann, Christopher M.
    LIQUID CRYSTALS, 2020, 47 (04) : 531 - 539
  • [47] An Improved Form of Bessel Functions for Efficiently and Accurately Simulating Higher Order Modes in a Cylindrical Waveguide
    Lin, M. C.
    2016 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2016,
  • [48] Some features of the leaky He1n modes of cylindrical dielectric waveguides
    Romanova, EA
    Melnikov, LA
    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, CONFERENCE PROCEEDINGS, 2004, : 338 - 340
  • [49] PROPAGATING MODES IN QUASICRYSTALS
    PATEL, H
    SHERRINGTON, D
    PHYSICAL REVIEW B, 1989, 40 (16): : 11185 - 11194
  • [50] Localized vibration modes propagating along edges of cylindrical and conical wedge-like structures
    Krylov, VV
    JOURNAL OF SOUND AND VIBRATION, 1999, 227 (01) : 215 - 221