On the physics of propagating Bessel modes in cylindrical waveguides

被引:15
|
作者
Gomez-Correa, J. E. [1 ,2 ]
Balderas-Mata, S. E. [3 ]
Coello, V. [2 ]
Puente, N. P. [1 ]
Rogel-Salazar, J. [4 ,5 ]
Chavez-Cerda, S. [6 ,7 ]
机构
[1] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, Nuevo Leon 66451, Mexico
[2] Ctr Invest Cient & Educ Super Ensenada, Unidad Monterrey, Nuevo Leon 66629, Mexico
[3] Univ Guadalajara, Dept Elect, Guadalajara 44840, Jalisco, Mexico
[4] Univ Hertfordshire, Sch Phys Astron & Math, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England
[5] Imperial Coll London, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2BZ, England
[6] Inst Nacl Astrofis Opt & Electr, Dept Opt, Apdo Postal 51-216, Puebla, Mexico
[7] Ctr Invest Opt, Leon 37150, Gto, Mexico
关键词
D O I
10.1119/1.4976698
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this paper, we demonstrate that by using a mathematical physics approach-focusing attention on the physics and using mathematics as a tool-it is possible to visualize the formation of the transverse modes inside a cylindrical waveguide. The opposite (physical mathematics) approach looks at the mathematical problem and then tries to impose a physical interpretation. For cylindrical waveguides, the physical mathematics route leads to the Bessel differential equation, and it is argued that in the core of the waveguide there are only Bessel functions of the first kind in the description of the transverse modes. The Neumann functions are deemed non-physical due to their singularity at the origin and are eliminated from the final description of the solution. In this paper, by combining geometric optics and wave optics concepts, we show that the inclusion of the Neumann function is physically necessary to describe fully and properly the formation of the propagating transverse modes. With this approach, we also show that the field outside a dielectric waveguide arises in a natural way. (C) 2017 American Association of Physics Teachers.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 50 条
  • [31] Transformation of propagating spin-wave modes in microscopic waveguides with variable width
    Demidov, Vladislav E.
    Jersch, Johann
    Demokritov, Sergej O.
    Rott, Karsten
    Krzysteczko, Patryk
    Reiss, Guenter
    PHYSICAL REVIEW B, 2009, 79 (05)
  • [32] PARAXIAL COUPLING OF PROPAGATING MODES IN THREE- DIMENSIONAL WAVEGUIDES WITH RANDOM BOUNDARIES
    Borcea, Liliana
    Garnier, Josselin
    MULTISCALE MODELING & SIMULATION, 2014, 12 (02): : 832 - 878
  • [33] A perturbation method for the modes of cylindrical acoustic waveguides in the presence of temperature gradients
    McCartin, BJ
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 102 (01): : 160 - 163
  • [34] INHOMOGENEOUS SLAB AND CYLINDRICAL DIELECTRIC WAVEGUIDES WITH DISCONTINUOUS PERMITTIVITIES - PROPAGATION MODES
    ALVAREZESTRADA, RF
    CALVO, ML
    OPTICA ACTA, 1982, 29 (05): : 667 - 684
  • [36] FDTD investigation of cylindrical waveguides with azimuthal corrugations excited by axisymmetric TE modes
    Peponis, Dimitrios
    Latsas, George
    Tigelis, Ioannis
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2023, 71 : S3 - S12
  • [37] Mixed Finite Elements Used to Analyze the Real and Complex Modes of Cylindrical Waveguides
    Delitsyn, A. L.
    Kruglov, S. I.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2011, 66 (06) : 546 - 551
  • [38] Mixed finite elements used to analyze the real and complex modes of cylindrical waveguides
    A. L. Delitsyn
    S. I. Kruglov
    Moscow University Physics Bulletin, 2011, 66 : 546 - 551
  • [39] Higher radial modes of azimuthal surface waves in magnetoactive cylindrical plasma waveguides
    Girka, Igor O.
    Kondratenko, V. M.
    Thumm, M.
    JOURNAL OF PLASMA PHYSICS, 2018, 84 (06)
  • [40] Plasmon modes supported by metamaterial-filled monolayer graphene cylindrical waveguides
    Saeed, M.
    Ghaffar, A.
    Alkanhal, Majeed A. S.
    Alqahtani, Ali H.
    Khan, Y.
    Rehman, Sajjad Ur
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (11) : 3515 - 3525