On the physics of propagating Bessel modes in cylindrical waveguides

被引:15
|
作者
Gomez-Correa, J. E. [1 ,2 ]
Balderas-Mata, S. E. [3 ]
Coello, V. [2 ]
Puente, N. P. [1 ]
Rogel-Salazar, J. [4 ,5 ]
Chavez-Cerda, S. [6 ,7 ]
机构
[1] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, Nuevo Leon 66451, Mexico
[2] Ctr Invest Cient & Educ Super Ensenada, Unidad Monterrey, Nuevo Leon 66629, Mexico
[3] Univ Guadalajara, Dept Elect, Guadalajara 44840, Jalisco, Mexico
[4] Univ Hertfordshire, Sch Phys Astron & Math, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England
[5] Imperial Coll London, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2BZ, England
[6] Inst Nacl Astrofis Opt & Electr, Dept Opt, Apdo Postal 51-216, Puebla, Mexico
[7] Ctr Invest Opt, Leon 37150, Gto, Mexico
关键词
D O I
10.1119/1.4976698
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this paper, we demonstrate that by using a mathematical physics approach-focusing attention on the physics and using mathematics as a tool-it is possible to visualize the formation of the transverse modes inside a cylindrical waveguide. The opposite (physical mathematics) approach looks at the mathematical problem and then tries to impose a physical interpretation. For cylindrical waveguides, the physical mathematics route leads to the Bessel differential equation, and it is argued that in the core of the waveguide there are only Bessel functions of the first kind in the description of the transverse modes. The Neumann functions are deemed non-physical due to their singularity at the origin and are eliminated from the final description of the solution. In this paper, by combining geometric optics and wave optics concepts, we show that the inclusion of the Neumann function is physically necessary to describe fully and properly the formation of the propagating transverse modes. With this approach, we also show that the field outside a dielectric waveguide arises in a natural way. (C) 2017 American Association of Physics Teachers.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 50 条
  • [21] Generation of vector vortex wave modes in cylindrical waveguides
    Md Khadimul Islam
    Pawan Gaire
    Arjuna Madanayake
    Shubhendu Bhardwaj
    Scientific Reports, 13
  • [22] Propagating and evanescent elastic waves in cylindrical waveguides of arbitrary cross section
    Damljanovic, V
    Weaver, RL
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 115 (04): : 1572 - 1581
  • [23] A design procedure for bandstop filters in waveguides supporting multiple propagating modes
    Vale, CAW
    Meyer, P
    Palmer, KD
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48 (12) : 2496 - 2503
  • [24] Coupled azimuthal modes propagating in current-carrying plasma waveguides
    Girka, V.
    Girka, I.
    Pavlenko, I.
    Girka, O.
    Girka, A.
    JOURNAL OF PLASMA PHYSICS, 2012, 78 : 105 - 123
  • [25] Analysis of Non-Propagating Modes for Light Trapping in Plasmonic Waveguides
    Ibrahim, Syed Muhammad Anas
    Kim, Kyoung-Youm
    23RD OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC2018), 2018,
  • [26] Investigation of elastic modes propagating in multi-wire helical waveguides
    Treyssede, Fabien
    Laguerre, Laurent
    JOURNAL OF SOUND AND VIBRATION, 2010, 329 (10) : 1702 - 1716
  • [27] CLASSIFICATION OF HYBRID MODES IN CYLINDRICAL DIELECTRIC OPTICAL-WAVEGUIDES
    SAFAAIJAZI, A
    YIP, GL
    RADIO SCIENCE, 1977, 12 (04) : 603 - 609
  • [28] Determination of dispersion diagram of symmetric modes for the cylindrical magnetoplasmonic waveguides
    Hosseinzadeh, Shahram
    OPTIK, 2012, 123 (11): : 1019 - 1021
  • [29] Generation of Propagating Bessel Beams Using Leaky-Wave Modes: Experimental Validation
    Ettorre, Mauro
    Rudolph, Scott Michael
    Grbic, Anthony
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (06) : 2645 - 2653
  • [30] Near-field characterization of propagating optical modes in photonic crystal waveguides
    Abashin, M
    Tortora, P
    Märki, IM
    Levy, U
    Nakagawa, W
    Vaccaro, L
    Herzig, HP
    Fainman, Y
    OPTICS EXPRESS, 2006, 14 (04): : 1643 - 1657