Trapped modes in cylindrical waveguides

被引:26
|
作者
Linton, CM [1 ]
McIver, M [1 ]
机构
[1] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
关键词
D O I
10.1093/qjmam/51.3.389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of trapped modes in the presence of two classes of obstacles in cylindrical acoustic waveguides. First we prove that trapped modes exist whenever the obstacle is thin and has a normal which is everywhere perpendicular to the generators of the cylinder. Secondly we prove that for the case of a circular cylindrical guide containing an axisymmetric obstacle, an infinite sequence of trapped modes exists, the frequency of the modes tending to infinity. In each case we consider an example where the trapped mode frequencies can be calculated numerically using the residue calculus method.
引用
收藏
页码:389 / 412
页数:24
相关论文
共 50 条
  • [1] Trapped modes in cylindrical waveguides
    Linton, C.M.
    McIver, M.
    Quarterly Journal of Mechanics and Applied Mathematics, 1998, 51 (pt 3): : 389 - 412
  • [2] Trapped modes in acoustic waveguides
    King's Coll London, London, United Kingdom
    Q J Mech Appl Math, pt 3 (477-492):
  • [3] Trapped modes in coastal waveguides
    Johnson, E. R.
    Rodney, J. T.
    Kaoullas, G.
    WAVE MOTION, 2012, 49 (01) : 212 - 216
  • [4] Trapped modes in acoustic waveguides
    Davies, EB
    Parnovski, L
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1998, 51 : 477 - 492
  • [5] Trapped modes for periodic structures in waveguides
    Edward, J
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (01) : 91 - 99
  • [6] Trapped Modes in Piezoelectric and Elastic Waveguides
    Sergei A. Nazarov
    Keijo M. Ruotsalainen
    Minna Silvola
    Journal of Elasticity, 2016, 124 : 193 - 223
  • [7] Trapped Modes in Piezoelectric and Elastic Waveguides
    Nazarov, Sergei A.
    Ruotsalainen, Keijo M.
    Silvola, Minna
    JOURNAL OF ELASTICITY, 2016, 124 (02) : 193 - 223
  • [8] Measurement of trapped modes in perforated waveguides
    Caspers, F
    Scholz, T
    PARTICLE ACCELERATORS, 1996, 51 (04): : 251 - 262
  • [9] Trapped modes in finite quantum waveguides
    A. L. Delitsyn
    B. T. Nguyen
    D. S. Grebenkov
    The European Physical Journal B, 2012, 85
  • [10] Trapped modes in finite quantum waveguides
    Delitsyn, A. L.
    Nguyen, B. T.
    Grebenkov, D. S.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (06):