Trapped modes in cylindrical waveguides

被引:26
|
作者
Linton, CM [1 ]
McIver, M [1 ]
机构
[1] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
关键词
D O I
10.1093/qjmam/51.3.389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of trapped modes in the presence of two classes of obstacles in cylindrical acoustic waveguides. First we prove that trapped modes exist whenever the obstacle is thin and has a normal which is everywhere perpendicular to the generators of the cylinder. Secondly we prove that for the case of a circular cylindrical guide containing an axisymmetric obstacle, an infinite sequence of trapped modes exists, the frequency of the modes tending to infinity. In each case we consider an example where the trapped mode frequencies can be calculated numerically using the residue calculus method.
引用
收藏
页码:389 / 412
页数:24
相关论文
共 50 条
  • [21] On the physics of propagating Bessel modes in cylindrical waveguides
    Gomez-Correa, J. E.
    Balderas-Mata, S. E.
    Coello, V.
    Puente, N. P.
    Rogel-Salazar, J.
    Chavez-Cerda, S.
    AMERICAN JOURNAL OF PHYSICS, 2017, 85 (05) : 341 - 345
  • [22] TE modes in parallel cylindrical surface waveguides
    T. N. Poghosyan
    Journal of Contemporary Physics (Armenian Academy of Sciences), 2011, 46 : 180 - 183
  • [23] MODES OF PROPAGATION IN CYLINDRICAL WAVEGUIDES WITH ANISOTROPIC WALLS
    THOMAS, BM
    MINNETT, HC
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1978, 125 (10): : 929 - 932
  • [24] On a method of search for trapped modes in domains with cylindrical ends
    Kalvine, VO
    Neittaanmäki, P
    Plamenevskii, BA
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 469 - 474
  • [25] Trapped modes in a cylindrical elastic waveguide with a damping gasket
    S. A. Nazarov
    Computational Mathematics and Mathematical Physics, 2008, 48
  • [26] Trapped Modes in a Cylindrical Elastic Waveguide with a Damping Gasket
    Nazarov, S. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (05) : 816 - 833
  • [27] Trapped modes in a non-axisymmetric cylindrical waveguide
    Lyapina, A. A.
    Pilipchuk, A. S.
    Sadreev, A. F.
    JOURNAL OF SOUND AND VIBRATION, 2018, 421 : 48 - 60
  • [28] Calculation of Characteristics of Trapped Modes in T-Shaped Waveguides
    Nazarov, S. A.
    Shanin, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (01) : 96 - 110
  • [29] Calculation of characteristics of trapped modes in T-shaped waveguides
    S. A. Nazarov
    A. V. Shanin
    Computational Mathematics and Mathematical Physics, 2011, 51 : 96 - 110
  • [30] Generation of vector vortex wave modes in cylindrical waveguides
    Islam, Md Khadimul
    Gaire, Pawan
    Madanayake, Arjuna
    Bhardwaj, Shubhendu
    SCIENTIFIC REPORTS, 2023, 13 (01)