DEEP LEARNING PARTICLE DETECTION FOR PROBABILISTIC TRACKING IN FLUORESCENCE MICROSCOPY IMAGES

被引:0
|
作者
Ritter, C. [1 ]
Wollmann, T. [1 ]
Lee, J-Y [2 ,3 ]
Bartenschlager, R. [2 ,3 ]
Rohr, K. [1 ]
机构
[1] Heidelberg Univ, BioQuant, IPMB, Biomed Comp Vis Grp, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Infect Dis, Mol Virol, Neuenheimer Feld 344, D-69120 Heidelberg, Germany
[3] German Ctr Infect Res, Heidelberg Partner Site, Heidelberg, Germany
关键词
Fluorescence microscopy; Particle tracking; Deep Learning; Hyperparameter optimization;
D O I
10.1109/isbi45749.2020.9098598
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic tracking of subcellular structures displayed as small spots in fluorescence microscopy images is important to quantify biological processes. We have developed a novel approach for tracking multiple fluorescent particles based on deep learning and Bayesian sequential estimation. Our approach combines a convolutional neural network for particle detection with probabilistic data association. We identified data association parameters that depend on the detection result, and automatically determine these parameters by hyperparameter optimization.We evaluated our approach based on image sequences of the Particle Tracking Challenge as well as live cell fluorescence microscopy data of hepatitis C virus proteins. It turned out that the new approach generally outperforms existing methods.
引用
收藏
页码:977 / 980
页数:4
相关论文
共 50 条
  • [41] Combined Detection and Segmentation of Cell Nuclei in Microscopy Images Using Deep Learning
    Ram, Sundaresh
    Nguyen, Vicky T.
    Limesand, Kirsten H.
    Rodriguez, Jeffrey J.
    2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 26 - 29
  • [42] A lightweight deep-learning model for parasite egg detection in microscopy images
    Xu, Wenbin
    Zhai, Qiang
    Liu, Jizhong
    Xu, Xingyu
    Hua, Jing
    PARASITES & VECTORS, 2024, 17 (01):
  • [43] A deep learning model for detection and tracking in high-throughput images of organoid
    Bian, Xuesheng
    Li, Gang
    Wang, Cheng
    Liu, Weiquan
    Lin, Xiuhong
    Chen, Zexin
    Cheung, Mancheung
    Luo, Xiongbiao
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [44] Video Object Tracking in Neural Axons with Fluorescence Microscopy Images
    Yuan, Liang
    Zhu, Junda
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [45] DEEP NEURAL NETWORK FOR COMBINED PARTICLE TRACKING AND COLOCALIZATION ANALYSIS IN TWO-CHANNEL MICROSCOPY IMAGES
    Spilger, Roman
    Lee, Ji-Young
    Bartenschlager, Ralf
    Rohr, Karl
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [46] In vivo particle tracking using fluorescence microscopy and optical trapping
    Balci, Hamza
    Blehm, Benjamin H.
    Toprak, Erdal
    Serpinskaya, Anna S.
    Gelfand, Vladimir I.
    Selvin, Paul R.
    BIOPHYSICAL JOURNAL, 2007, : 527A - 527A
  • [47] GRAVITATIONAL CELL DETECTION AND TRACKING IN FLUORESCENCE MICROSCOPY DATA
    Eftimiu, Nikomidisz Jorgosz
    Kozubek, Michal
    IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024, 2024,
  • [48] DEEP VESSEL TRACKING: A GENERALIZED PROBABILISTIC APPROACH VIA DEEP LEARNING
    Wu, Aaron
    Xu, Ziyue
    Gao, Mingchen
    Buty, Mario
    Mollura, Daniel J.
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 1363 - 1367
  • [49] DEEP NEURAL NETWORK FOR 3D PARTICLE DETECTION IN 3D FLUORESCENCE MICROSCOPY IMAGES VIA DENSITY MAP REGRESSION
    Spilger, R.
    Chagin, V. O.
    Bold, C. S.
    Schermelleh, L.
    Muller, U. C.
    Cardoso, M. C.
    Rohr, K.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [50] Automatic Detection of Filopodia from Fluorescence Microscopy Images
    Nilufar, Sharmin
    Morrow, Anne A.
    Lee, Jonathan M.
    Perkins, Theodore J.
    PROCEEDINGS IWBBIO 2013: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, 2013, : 251 - +