GRAVITATIONAL CELL DETECTION AND TRACKING IN FLUORESCENCE MICROSCOPY DATA

被引:0
|
作者
Eftimiu, Nikomidisz Jorgosz [1 ]
Kozubek, Michal [1 ]
机构
[1] Masaryk Univ, Fac Informat, Ctr Biomed Image Anal, Brno, Czech Republic
关键词
Image analysis; cell detection; cell tracking; Cell Tracking Challenge;
D O I
10.1109/ISBI56570.2024.10635151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic detection and tracking of cells in microscopy images are major applications of computer vision technologies in both biomedical research and clinical practice. Though machine learning methods are increasingly common in these fields, classical algorithms still offer significant advantages for both tasks, including better explainability, faster computation, lower hardware requirements and more consistent performance. In this paper, we present a novel approach based on gravitational force fields that can compete with, and potentially outperform modern machine learning models when applied to fluorescence microscopy images. This method includes detection, segmentation, and tracking elements, with the results demonstrated on a Cell Tracking Challenge dataset.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] NEUROFILAMENT TRACKING BY DETECTION IN FLUORESCENCE MICROSCOPY IMAGES
    Zhu, Junda
    Yuan, Liang
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3123 - 3127
  • [2] DETECTION AND TRACKING OF ASTRAL MICROTUBULES IN FLUORESCENCE MICROSCOPY IMAGES
    Levine, Joshua
    Grangetto, Marco
    Varrecchia, Marilena
    Olmo, Gabriella
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 361 - 365
  • [3] Automated Detection and Tracking of Cell Clusters in Time-Lapse Fluorescence Microscopy Images
    Chang, Yuan-Hsiang
    Yokota, Hideo
    Abe, Kuniya
    Tang, Chia-Tong
    Tasi, Ming-Dar
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2017, 37 (01) : 18 - 25
  • [4] Automated Detection and Tracking of Cell Clusters in Time-Lapse Fluorescence Microscopy Images
    Yuan-Hsiang Chang
    Hideo Yokota
    Kuniya Abe
    Chia-Tong Tang
    Ming-Dar Tasi
    Journal of Medical and Biological Engineering, 2017, 37 : 18 - 25
  • [5] Validation-data Generation for Brightfield Microscopy Cell Tracking using Fluorescence Samples
    Quinde-Cobos, Patricia
    Quiros, Steve
    Siles-Canales, Francisco
    TECNOLOGIA EN MARCHA, 2020, 33 : 91 - 95
  • [6] DETECTION AND TRACKING OF GOLGI OUTPOSTS IN MICROSCOPY DATA
    Yang, Huei-Fang
    Chen, Chu-Song
    Descombes, Xavier
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 793 - 796
  • [7] DEEP LEARNING FOR PARTICLE DETECTION AND TRACKING IN FLUORESCENCE MICROSCOPY IMAGES
    Ritter, C.
    Spilger, R.
    Lee, J-Y
    Bartenschlager, R.
    Rohr, K.
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 873 - 876
  • [8] A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering
    Smal, Ihor
    Niessen, Wiro
    Meijering, Erik
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 264 - 267
  • [9] Mitochondrial temporal network tracking for 4D live-cell fluorescence microscopy data
    Wang, Zichen
    Natekar, Parth
    Tea, Challana
    Tamir, Sharon
    Hakozaki, Hiroyuki
    Schoneberg, Johannes
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 98A - 98A
  • [10] Automated multidimensional single molecule fluorescence microscopy feature detection and tracking
    Daniel J. Rolfe
    Charles I. McLachlan
    Michael Hirsch
    Sarah R. Needham
    Christopher J. Tynan
    Stephen E. D. Webb
    Marisa L. Martin-Fernandez
    Michael P. Hobson
    European Biophysics Journal, 2011, 40 : 1167 - 1186