GRAVITATIONAL CELL DETECTION AND TRACKING IN FLUORESCENCE MICROSCOPY DATA

被引:0
|
作者
Eftimiu, Nikomidisz Jorgosz [1 ]
Kozubek, Michal [1 ]
机构
[1] Masaryk Univ, Fac Informat, Ctr Biomed Image Anal, Brno, Czech Republic
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
关键词
Image analysis; cell detection; cell tracking; Cell Tracking Challenge;
D O I
10.1109/ISBI56570.2024.10635151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic detection and tracking of cells in microscopy images are major applications of computer vision technologies in both biomedical research and clinical practice. Though machine learning methods are increasingly common in these fields, classical algorithms still offer significant advantages for both tasks, including better explainability, faster computation, lower hardware requirements and more consistent performance. In this paper, we present a novel approach based on gravitational force fields that can compete with, and potentially outperform modern machine learning models when applied to fluorescence microscopy images. This method includes detection, segmentation, and tracking elements, with the results demonstrated on a Cell Tracking Challenge dataset.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] STOCHASTIC GEOMETRY FOR MULTIPLE OBJECT TRACKING IN FLUORESCENCE MICROSCOPY
    Craciun, Paula
    Zerubia, Josiane
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 444 - 448
  • [42] Simultaneous detection of EGFP and cell surface markers by fluorescence microscopy in lymphoid tissues
    Kusser, KL
    Randall, TD
    JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2003, 51 (01) : 5 - 14
  • [43] Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy
    Stoeckl, M. T.
    Herrmann, A.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2010, 1798 (07): : 1444 - 1456
  • [44] Probabilistic tracking of virus particles in fluorescence microscopy images
    Godinez, W. J.
    Lampe, M.
    Woerz, S.
    Mueller, B.
    Eils, R.
    Rohr, K.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 272 - +
  • [45] MITOSIS DETECTION FOR STEM CELL TRACKING IN PHASE-CONTRAST MICROSCOPY IMAGES
    Huh, Seungil
    Eom, Sungeun
    Bise, Ryoma
    Yin, Zhaozheng
    Kanade, Takeo
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 2121 - 2127
  • [46] Deep probabilistic tracking of particles in fluorescence microscopy images
    Spilger, Roman
    Lee, Ji-Young
    Chagin, Vadim O.
    Schermelleh, Lothar
    Cardoso, M. Cristina
    Bartenschlager, Ralf
    Rohr, Karl
    MEDICAL IMAGE ANALYSIS, 2021, 72
  • [47] ACDC: Automated Cell Detection and Counting for Time-Lapse Fluorescence Microscopy
    Rundo, Leonardo
    Tangherloni, Andrea
    Tyson, Darren R.
    Betta, Riccardo
    Militello, Carmelo
    Spolaor, Simone
    Nobile, Marco S.
    Besozzi, Daniela
    Lubbock, Alexander L. R.
    Quaranta, Vito
    Mauri, Giancarlo
    Lopez, Carlos F.
    Cazzaniga, Paolo
    APPLIED SCIENCES-BASEL, 2020, 10 (18):
  • [48] Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing microscopy
    Karen, J. K.
    Gareau, D. S.
    Dusza, S. W.
    Tudisco, M.
    Rajadhyaksha, M.
    Nehal, K. S.
    BRITISH JOURNAL OF DERMATOLOGY, 2009, 160 (06) : 1242 - 1250
  • [49] Tracking Bacterial Nanocellulose in Animal Tissues by Fluorescence Microscopy
    Mota, Renato
    Rodrigues, Ana Cristina
    Silva-Carvalho, Ricardo
    Costa, Ligia
    Martins, Daniela
    Sampaio, Paula
    Dourado, Fernando
    Gama, Miguel
    NANOMATERIALS, 2022, 12 (15)
  • [50] Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy
    Dzyubachyk, Oleh
    van Cappellen, Wiggert A.
    Essers, Jeroen
    Niessen, Wiro J.
    Meijering, Erik
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (03) : 852 - 867