DEEP LEARNING PARTICLE DETECTION FOR PROBABILISTIC TRACKING IN FLUORESCENCE MICROSCOPY IMAGES

被引:0
|
作者
Ritter, C. [1 ]
Wollmann, T. [1 ]
Lee, J-Y [2 ,3 ]
Bartenschlager, R. [2 ,3 ]
Rohr, K. [1 ]
机构
[1] Heidelberg Univ, BioQuant, IPMB, Biomed Comp Vis Grp, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Infect Dis, Mol Virol, Neuenheimer Feld 344, D-69120 Heidelberg, Germany
[3] German Ctr Infect Res, Heidelberg Partner Site, Heidelberg, Germany
关键词
Fluorescence microscopy; Particle tracking; Deep Learning; Hyperparameter optimization;
D O I
10.1109/isbi45749.2020.9098598
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic tracking of subcellular structures displayed as small spots in fluorescence microscopy images is important to quantify biological processes. We have developed a novel approach for tracking multiple fluorescent particles based on deep learning and Bayesian sequential estimation. Our approach combines a convolutional neural network for particle detection with probabilistic data association. We identified data association parameters that depend on the detection result, and automatically determine these parameters by hyperparameter optimization.We evaluated our approach based on image sequences of the Particle Tracking Challenge as well as live cell fluorescence microscopy data of hepatitis C virus proteins. It turned out that the new approach generally outperforms existing methods.
引用
收藏
页码:977 / 980
页数:4
相关论文
共 50 条
  • [21] Myelin detection in fluorescence microscopy images using machine learning
    Yetis, Sibel Cimen
    Capar, Abdulkerim
    Ekinci, Dursun A.
    Ayten, Umut E.
    Kerman, Bilal E.
    Toreyin, B. Ugur
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 346
  • [22] Segmentation of Cell Nuclei in Fluorescence Microscopy Images Using Deep Learning
    Narotamo, Hemaxi
    Sanches, J. Miguel
    Silveira, Margarida
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 53 - 64
  • [23] TWO-FILTER PROBABILISTIC DATA ASSOCIATION FOR TRACKING OF VIRUS PARTICLES IN FLUORESCENCE MICROSCOPY IMAGES
    Ritter, Christian
    Imle, Andrea
    Lee, Ji Young
    Mueller, Barbara
    Fackler, Oliver T.
    Bartenschlager, Ralf
    Rohr, Karl
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 957 - 960
  • [24] Object Tracking With Particle Filtering in Fluorescence Microscopy Images: Application to the Motion of Neurofilaments in Axons
    Yuan, Liang
    Zheng, Yuan F.
    Zhu, Junda
    Wang, Lina
    Brown, A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (01) : 117 - 130
  • [25] Deep learning and hybrid approach for particle detection in defocusing particle tracking velocimetry
    Sax, Christian
    Dreisbach, Maximilian
    Leister, Robin
    Kriegseis, Jochen
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (09)
  • [26] Adaptive particle representation of fluorescence microscopy images
    Cheeseman, Bevan L.
    Guenther, Ulrik
    Gonciarz, Krzysztof
    Susik, Mateusz
    Sbalzarini, Ivo F.
    NATURE COMMUNICATIONS, 2018, 9
  • [27] Adaptive particle representation of fluorescence microscopy images
    Bevan L. Cheeseman
    Ulrik Günther
    Krzysztof Gonciarz
    Mateusz Susik
    Ivo F. Sbalzarini
    Nature Communications, 9
  • [28] Tuberculosis Bacteria Detection and Counting in Fluorescence Microscopy Images Using a Multi-Stage Deep Learning Pipeline
    Zachariou, Marios
    Arandjelovic, Ognjen
    Sabiiti, Wilber
    Mtafya, Bariki
    Sloan, Derek
    INFORMATION, 2022, 13 (02)
  • [29] Deep Learning for Tracking of Intracellular Vesicles in Time-lapse Microscopy Images
    Liu, Zhichao
    Jin, Luhong
    Nedzved, Alexander
    Ablameyko, Sergey
    Xu, Yingke
    AOPC 2021: NOVEL TECHNOLOGIES AND INSTRUMENTS FOR ASTRONOMICAL MULTI-BAND OBSERVATIONS, 2021, 12069
  • [30] Hybrid Wavelet-Deep Learning Framework for Fluorescence Microscopy Images Enhancement
    Branciforti, Francesco
    Maggiore, Maura
    Meiburger, Kristen M.
    Pannellini, Tania
    Salvi, Massimo
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (06)