DEEP LEARNING PARTICLE DETECTION FOR PROBABILISTIC TRACKING IN FLUORESCENCE MICROSCOPY IMAGES

被引:0
|
作者
Ritter, C. [1 ]
Wollmann, T. [1 ]
Lee, J-Y [2 ,3 ]
Bartenschlager, R. [2 ,3 ]
Rohr, K. [1 ]
机构
[1] Heidelberg Univ, BioQuant, IPMB, Biomed Comp Vis Grp, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Infect Dis, Mol Virol, Neuenheimer Feld 344, D-69120 Heidelberg, Germany
[3] German Ctr Infect Res, Heidelberg Partner Site, Heidelberg, Germany
关键词
Fluorescence microscopy; Particle tracking; Deep Learning; Hyperparameter optimization;
D O I
10.1109/isbi45749.2020.9098598
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic tracking of subcellular structures displayed as small spots in fluorescence microscopy images is important to quantify biological processes. We have developed a novel approach for tracking multiple fluorescent particles based on deep learning and Bayesian sequential estimation. Our approach combines a convolutional neural network for particle detection with probabilistic data association. We identified data association parameters that depend on the detection result, and automatically determine these parameters by hyperparameter optimization.We evaluated our approach based on image sequences of the Particle Tracking Challenge as well as live cell fluorescence microscopy data of hepatitis C virus proteins. It turned out that the new approach generally outperforms existing methods.
引用
收藏
页码:977 / 980
页数:4
相关论文
共 50 条
  • [31] Automated Detection and Tracking of Cell Clusters in Time-Lapse Fluorescence Microscopy Images
    Yuan-Hsiang Chang
    Hideo Yokota
    Kuniya Abe
    Chia-Tong Tang
    Ming-Dar Tasi
    Journal of Medical and Biological Engineering, 2017, 37 : 18 - 25
  • [32] Automated Detection and Tracking of Cell Clusters in Time-Lapse Fluorescence Microscopy Images
    Chang, Yuan-Hsiang
    Yokota, Hideo
    Abe, Kuniya
    Tang, Chia-Tong
    Tasi, Ming-Dar
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2017, 37 (01) : 18 - 25
  • [33] Multi defect detection and analysis of electron microscopy images with deep learning
    Shen, Mingren
    Li, Guanzhao
    Wu, Dongxia
    Liu, Yuhan
    Greaves, Jacob R. C.
    Hao, Wei
    Krakauer, Nathaniel J.
    Krudy, Leah
    Perez, Jacob
    Sreenivasan, Varun
    Sanchez, Bryan
    Torres-Velazquez, Oigimer
    Li, Wei
    Field, Kevin G.
    Morgan, Dane
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 199
  • [34] OPTIMIZING PARTICLE DETECTION BY COLOCALIZATION ANALYSIS IN MULTI-CHANNEL FLUORESCENCE MICROSCOPY IMAGES
    Ritter, C.
    Newrly, A.
    Schifferdecker, S.
    Roggenbach, I
    Mueller, B.
    Rohr, K.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 882 - 885
  • [35] Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning
    Yichen Wu
    Yair Rivenson
    Hongda Wang
    Yilin Luo
    Eyal Ben-David
    Laurent A. Bentolila
    Christian Pritz
    Aydogan Ozcan
    Nature Methods, 2019, 16 : 1323 - 1331
  • [36] Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning
    Wu, Yichen
    Rivenson, Yair
    Wang, Hongda
    Luo, Yilin
    Ben-David, Eyal
    Bentolila, Laurent A.
    Pritz, Christian
    Ozcan, Aydogan
    NATURE METHODS, 2019, 16 (12) : 1323 - +
  • [37] UTILIZING UNCERTAINTY ESTIMATION IN DEEP LEARNING SEGMENTATION OF FLUORESCENCE MICROSCOPY IMAGES WITH MISSING MARKERS
    Gomariz, Alvaro
    Egli, Raphael
    Portenier, Tiziano
    Nombela-Arrieta, Cesar
    Goksel, Orcun
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 371 - 374
  • [38] Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis
    Smal, Ihor
    Draegestein, Katharina
    Galjart, Niels
    Niessen, Wiro
    Meijering, Erik
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (06) : 789 - 804
  • [39] Detection of Filamentous Microorganisms in Fluorescence Microscopy Images
    Yu, Yongjian
    Wang, Jue
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1895 - 1898
  • [40] A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering
    Smal, Ihor
    Niessen, Wiro
    Meijering, Erik
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 264 - 267