Machine-Learning-Assisted Accurate Band Gap Predictions of Functionalized MXene

被引:260
|
作者
Rajan, Arunkumar Chitteth [1 ]
Mishra, Avanish [1 ]
Satsangi, Swanti [1 ]
Vaish, Rishabh [1 ]
Mizuseki, Hiroshi [2 ]
Lee, Kwang-Ryeol [2 ]
Singh, Abhishek K. [1 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
[2] Korea Inst Sci & Technol, Computat Sci Res Ctr, Seoul 02792, South Korea
关键词
EXFOLIATION; STABILITY; CARBIDES; PHASE; MAX;
D O I
10.1021/acs.chemmater.8b00686
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MXenes are two-dimensional (2D) transition metal carbides and nitrides, and are invariably metallic in pristine form. While spontaneous passivation of their reactive bare surfaces lends unprecedented functionalities, consequently a many-folds increase in number of possible functionalized MXene makes their characterization difficult. Here, we study the electronic properties of this vast class of materials by accurately estimating the band gaps using statistical learning. Using easily available properties of the MXene, namely, boiling and melting points, atomic radii, phases, bond lengths, etc., as input features, models were developed using kernel ridge (KRR), support vector (SVR), Gaussian process (GPR), and bootstrap aggregating regression algorithms. Among these, the GPR model predicts the band gap with lowest root-mean-squared error (rmse) of 0.14 eV, within seconds. Most importantly, these models do not involve the Perdew-Burke-Ernzerhof (PBE) band gap as a feature. Our results demonstrate that machine-learning models can bypass the band gap underestimation problem of local and semilocal functionals used in density functional theory (DFT) calculations, without subsequent correction using the time-consuming GW approach.
引用
收藏
页码:4031 / 4038
页数:8
相关论文
共 50 条
  • [31] Machine-Learning-Assisted Manipulation and Readout of Molecular Spin Qubits
    Bonizzoni, Claudio
    Tincani, Mirco
    Santanni, Fabio
    Affronte, Marco
    PHYSICAL REVIEW APPLIED, 2022, 18 (06)
  • [32] Machine-learning-assisted Bacteria Identification in AC Nanopore Measurement
    Sakamoto, Maami
    Hori, Kosuke
    Yamamoto, Takatoki
    SENSORS AND MATERIALS, 2023, 35 (09) : 3161 - 3171
  • [33] Machine-Learning-Assisted Construction of Ternary Convex Hull Diagrams
    Rossignol, Hugo
    Minotakis, Michail
    Cobelli, Matteo
    Sanvito, Stefano
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1828 - 1840
  • [34] Machine-Learning-Assisted Many-Body Entanglement Measurement
    Gray, Johnnie
    Banchi, Leonardo
    Bayat, Abolfazl
    Bose, Sougato
    PHYSICAL REVIEW LETTERS, 2018, 121 (15)
  • [35] On the explainability of machine-learning-assisted turbulence modeling for transonic flows
    He, Xiao
    Tan, Jianheng
    Rigas, Georgios
    Vahdati, Mehdi
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2022, 97
  • [36] Machine-learning-assisted materials discovery using failed experiments
    Raccuglia, Paul
    Elbert, Katherine C.
    Adler, Philip D. F.
    Falk, Casey
    Wenny, Malia B.
    Mollo, Aurelio
    Zeller, Matthias
    Friedler, Sorelle A.
    Schrier, Joshua
    Norquist, Alexander J.
    NATURE, 2016, 533 (7601) : 73 - +
  • [37] Machine-Learning-Assisted Intelligent Imaging Flow Cytometry: A Review
    Luo, Shaobo
    Shi, Yuzhi
    Chin, Lip Ket
    Hutchinson, Paul Edward
    Zhang, Yi
    Chierchia, Giovanni
    Talbot, Hugues
    Jiang, Xudong
    Bourouina, Tarik
    Liu, Ai-Qun
    ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (11)
  • [38] Machine-learning-assisted inverse design of scattering enhanced metasurface
    Lin, Hai
    Hou, Junjie
    Jin, Jing
    Wang, Yumei
    Tang, Rongxin
    Shi, Xintong
    Tian, Yuze
    Xu, Weilin
    OPTICS EXPRESS, 2022, 30 (02) : 3076 - 3088
  • [39] Decoding Both DNA and Methylated DNA Using a MXene-Based Nanochannel Device: Supervised Machine-Learning-Assisted Exploration
    Mittal, Sneha
    Manna, Souvik
    Jena, Milan Kumar
    Pathak, Biswarup
    ACS MATERIALS LETTERS, 2023, 5 (06): : 1570 - 1580
  • [40] Machine-learning-assisted prediction of surgical outcomes in patients undergoing gastrectomy
    Sheng Lu
    Min Yan
    Chen Li
    Chao Yan
    Zhenggang Zhu
    Wencong Lu
    Chinese Journal of Cancer Research, 2019, 31 (05) : 797 - 805