Machine-learning-assisted Bacteria Identification in AC Nanopore Measurement

被引:0
|
作者
Sakamoto, Maami [1 ]
Hori, Kosuke [1 ]
Yamamoto, Takatoki [1 ]
机构
[1] Tokyo Inst Technol, Mech Engn, Ishikawadai 1-314,2-12-1 Ookayama,Meguro Ku, Tokyo 1528550, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
nanopore; AC; bacteria; machine learning; lock-in detection; PARTICLES; PLATFORM;
D O I
10.18494/SAM4398
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The AC nanopore method can measure the impedance of single nanoparticles to obtain information on their material properties as well as their size. One of the technical challenges in applying this capability to bacterial sensing lies in the realization of an analytical method to identify bacteria from measured values. In this study, we improved the bacteria identification performance of the AC nanopore method by using machine learning. Comparing four representative machine learning methods for the classification of bacterial groups that are nearly identical in size and difficult to classify based on size, we found that the random forest method has the best classification performance, achieving a classification accuracy of 78.6% for six different particles containing five bacterial species. The use of machine learning was demonstrated to be effective in improving the performance of the bacterial classification capability in the AC nanopore method.
引用
下载
收藏
页码:3161 / 3171
页数:11
相关论文
共 50 条
  • [1] Disintegration and Machine-Learning-Assisted Identification of Bacteria on Antimicrobial and Plasmonic Ag-CuXO Nanostructures
    Sahin, Furkan
    Camdal, Ali
    Sahin, Gamze Demirel
    Ceylan, Ahmet
    Ruzi, Mahmut
    Onses, Mustafa Serdar
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (09) : 11563 - 11574
  • [2] Machine-learning-assisted modeling
    Greenstreet, Sarah
    PHYSICS TODAY, 2021, 74 (07) : 42 - 47
  • [3] Machine-Learning-Assisted Many-Body Entanglement Measurement
    Gray, Johnnie
    Banchi, Leonardo
    Bayat, Abolfazl
    Bose, Sougato
    PHYSICAL REVIEW LETTERS, 2018, 121 (15)
  • [4] Soft Hydrogel Actuator for Fast Machine-Learning-Assisted Bacteria Detection
    Lavrentev, Filipp, V
    Rumyantsev, Igor S.
    Ivanov, Artemii S.
    Shilovskikh, Vladimir V.
    Orlova, Olga Yu
    Nikolaev, Konstantin G.
    Andreeva, Daria, V
    Skorb, Ekaterina, V
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 7321 - 7328
  • [5] Machine-Learning-Assisted Descriptors Identification for Indoor Formaldehyde Oxidation Catalysts
    Cao, Xinyuan
    Huang, Jisi
    Du, Kexin
    Tian, Yawen
    Hu, Zhixin
    Luo, Zhu
    Wang, Jinlong
    Guo, Yanbing
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (19) : 8372 - 8379
  • [6] Comprehensive Identification of Bacteria Using High Time-resolved AC Nanopore Measurements Coupled with Machine Learning
    Sakamoto M.
    Hori K.
    Yamamoto T.
    Yoshida T.
    Nakashima G.
    IEEJ Transactions on Sensors and Micromachines, 2024, 144 (07) : 181 - 182
  • [7] Machine-Learning-Assisted Synthesis of Polar Racemates
    Nisbet, Matthew L.
    Pendleton, Ian M.
    Nolis, Gene M.
    Griffith, Kent J.
    Schrier, Joshua
    Cabana, Jordi
    Norquist, Alexander J.
    Poeppelmeier, Kenneth R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (16) : 7555 - 7566
  • [8] Identification of Model Particle Mixtures Using Machine-Learning-Assisted Laser Diffraction
    Villegas, Arturo
    Quiroz-Juarez, Mario A.
    U'Ren, Alfred B.
    Torres, Juan P.
    Leon-Montiel, Roberto de J.
    PHOTONICS, 2022, 9 (02)
  • [9] Machine-learning-assisted selection of antibiotic prescription
    Didelot, Xavier
    Pouwels, Koen B.
    NATURE MEDICINE, 2019, 25 (07) : 1033 - 1034
  • [10] Machine-learning-assisted selection of antibiotic prescription
    Xavier Didelot
    Koen B. Pouwels
    Nature Medicine, 2019, 25 : 1033 - 1034