Machine-Learning-Assisted Many-Body Entanglement Measurement

被引:75
|
作者
Gray, Johnnie [1 ]
Banchi, Leonardo [1 ]
Bayat, Abolfazl [1 ,2 ]
Bose, Sougato [1 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610051, Sichuan, Peoples R China
基金
英国工程与自然科学研究理事会; 国家重点研发计划;
关键词
QUANTUM STATE; SEPARABILITY; NETWORKS; ENTROPY;
D O I
10.1103/PhysRevLett.121.150503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement not only plays a crucial role in quantum technologies, but is key to our understanding of quantum correlations in many-body systems. However, in an experiment, the only way of measuring entanglement in a generic mixed state is through reconstructive quantum tomography, requiring an exponential number of measurements in the system size. Here, we propose a machine-learning-assisted scheme to measure the entanglement between arbitrary subsystems of size N-A and N-B, with O(N-A + N-B) measurements, and without any prior knowledge of the state. The method exploits a neural network to learn the unknown, nonlinear function relating certain measurable moments and the logarithmic negativity. Our procedure will allow entanglement measurements in a wide variety of systems, including strongly interacting many-body systems in both equilibrium and nonequilibrium regimes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Certificates of quantum many-body properties assisted by machine learning
    Requena, Borja
    Munoz-Gil, Gorka
    Lewenstein, Maciej
    Dunjko, Vedran
    Tura, Jordi
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [2] Entanglement in many-body systems
    Amico, Luigi
    Fazio, Rosario
    Osterloh, Andreas
    Vedral, Vlatko
    REVIEWS OF MODERN PHYSICS, 2008, 80 (02) : 517 - 576
  • [3] Machine Learning for Many-Body Localization Transition
    饶文嘉
    Chinese Physics Letters, 2020, 37 (08) : 17 - 23
  • [4] Machine Learning for Many-Body Localization Transition*
    Rao, Wen-Jia
    CHINESE PHYSICS LETTERS, 2020, 37 (08)
  • [5] Machine-learning-assisted modeling
    Greenstreet, Sarah
    PHYSICS TODAY, 2021, 74 (07) : 42 - 47
  • [6] Machine-learning-assisted Bacteria Identification in AC Nanopore Measurement
    Sakamoto, Maami
    Hori, Kosuke
    Yamamoto, Takatoki
    SENSORS AND MATERIALS, 2023, 35 (09) : 3161 - 3171
  • [7] Many-body entanglement in fermion systems
    Gigena, N.
    Di Tullio, M.
    Rossignoli, R.
    PHYSICAL REVIEW A, 2021, 103 (05)
  • [8] Optical Pumping into Many-Body Entanglement
    Cho, Jaeyoon
    Bose, Sougato
    Kim, M. S.
    PHYSICAL REVIEW LETTERS, 2011, 106 (02)
  • [9] Many-body entanglement in decoherence processes
    McAneney, H
    Lee, J
    Kim, MS
    PHYSICAL REVIEW A, 2003, 68 (06):
  • [10] Many-body entanglement in decoherence processes
    McAneney, Helen
    Lee, Jinhyoung
    Kim, M.S.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 68 (06): : 1 - 063814