Machine-Learning-Assisted Many-Body Entanglement Measurement

被引:75
|
作者
Gray, Johnnie [1 ]
Banchi, Leonardo [1 ]
Bayat, Abolfazl [1 ,2 ]
Bose, Sougato [1 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610051, Sichuan, Peoples R China
基金
英国工程与自然科学研究理事会; 国家重点研发计划;
关键词
QUANTUM STATE; SEPARABILITY; NETWORKS; ENTROPY;
D O I
10.1103/PhysRevLett.121.150503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement not only plays a crucial role in quantum technologies, but is key to our understanding of quantum correlations in many-body systems. However, in an experiment, the only way of measuring entanglement in a generic mixed state is through reconstructive quantum tomography, requiring an exponential number of measurements in the system size. Here, we propose a machine-learning-assisted scheme to measure the entanglement between arbitrary subsystems of size N-A and N-B, with O(N-A + N-B) measurements, and without any prior knowledge of the state. The method exploits a neural network to learn the unknown, nonlinear function relating certain measurable moments and the logarithmic negativity. Our procedure will allow entanglement measurements in a wide variety of systems, including strongly interacting many-body systems in both equilibrium and nonequilibrium regimes.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Aspects of Entanglement in Quantum Many-Body Systems
    Clark, John W.
    Habibian, Hessam
    Mandilara, Aikaterini D.
    Ristig, Manfred L.
    FOUNDATIONS OF PHYSICS, 2010, 40 (9-10) : 1200 - 1220
  • [32] Uncovering quantum many-body scars with quantum machine learning
    Jia-Jin Feng
    Bingzhi Zhang
    Zhi-Cheng Yang
    Quntao Zhuang
    npj Quantum Information, 11 (1)
  • [33] Provably efficient machine learning for quantum many-body problems
    Huang, Hsin-Yuan
    Kueng, Richard
    Torlai, Giacomo
    Albert, Victor V.
    Preskill, John
    SCIENCE, 2022, 377 (6613) : 1397 - +
  • [34] NetKet: A machine learning toolkit for many-body quantum systems
    Carleo, Giuseppe
    Choo, Kenny
    Hofmann, Damian
    Smith, James E. T.
    Westerhout, Tom
    Alet, Fabien
    Davis, Emily J.
    Efthymiou, Stavros
    Glasser, Ivan
    Lin, Sheng-Hsuan
    Mauri, Marta
    Mazzola, Guglielmo
    Mendl, Christian B.
    van Nieuwenburg, Evert
    O'Reilly, Ossian
    Theveniaut, Hugo
    Torlai, Giacomo
    Vicentini, Filippo
    Wietek, Alexander
    SOFTWAREX, 2019, 10
  • [35] Machine-Learning-Assisted Synthesis of Polar Racemates
    Nisbet, Matthew L.
    Pendleton, Ian M.
    Nolis, Gene M.
    Griffith, Kent J.
    Schrier, Joshua
    Cabana, Jordi
    Norquist, Alexander J.
    Poeppelmeier, Kenneth R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (16) : 7555 - 7566
  • [36] Automated machine learning of accurate many-body potentials for molecular simulations
    Bull-Vulpe, Ethan
    Ganapathy, Kaushik
    Riera, Marc
    Zhai, Yaoguang
    Paesani, Francesco
    Goetz, Andreas
    Brown, Sandra
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [37] Machine learning the many-body localization transition in random spin systems
    Rao, Wen-Jia
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (39)
  • [38] Machine-learning-inspired quantum control in many-body dynamics
    Mao, Meng-Yun
    Cheng, Zheng
    Li, Liangsheng
    Wu, Ning
    You, Wen -Long
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [39] Many-Body Entropies and Entanglement from Polynomially Many Local Measurements
    Vermersch, Benoit
    Ljubotina, Marko
    Cirac, J. Ignacio
    Zoller, Peter
    Serbyn, Maksym
    Piroli, Lorenzo
    PHYSICAL REVIEW X, 2024, 14 (03):
  • [40] Machine learning approach to dynamical properties of quantum many-body systems
    Hendry, Douglas
    Feiguin, Adrian E.
    PHYSICAL REVIEW B, 2019, 100 (24)