Machine-Learning-Assisted Accurate Band Gap Predictions of Functionalized MXene

被引:260
|
作者
Rajan, Arunkumar Chitteth [1 ]
Mishra, Avanish [1 ]
Satsangi, Swanti [1 ]
Vaish, Rishabh [1 ]
Mizuseki, Hiroshi [2 ]
Lee, Kwang-Ryeol [2 ]
Singh, Abhishek K. [1 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
[2] Korea Inst Sci & Technol, Computat Sci Res Ctr, Seoul 02792, South Korea
关键词
EXFOLIATION; STABILITY; CARBIDES; PHASE; MAX;
D O I
10.1021/acs.chemmater.8b00686
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MXenes are two-dimensional (2D) transition metal carbides and nitrides, and are invariably metallic in pristine form. While spontaneous passivation of their reactive bare surfaces lends unprecedented functionalities, consequently a many-folds increase in number of possible functionalized MXene makes their characterization difficult. Here, we study the electronic properties of this vast class of materials by accurately estimating the band gaps using statistical learning. Using easily available properties of the MXene, namely, boiling and melting points, atomic radii, phases, bond lengths, etc., as input features, models were developed using kernel ridge (KRR), support vector (SVR), Gaussian process (GPR), and bootstrap aggregating regression algorithms. Among these, the GPR model predicts the band gap with lowest root-mean-squared error (rmse) of 0.14 eV, within seconds. Most importantly, these models do not involve the Perdew-Burke-Ernzerhof (PBE) band gap as a feature. Our results demonstrate that machine-learning models can bypass the band gap underestimation problem of local and semilocal functionals used in density functional theory (DFT) calculations, without subsequent correction using the time-consuming GW approach.
引用
收藏
页码:4031 / 4038
页数:8
相关论文
共 50 条
  • [21] Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction
    Na, Gyoung S.
    Jang, Seunghun
    Lee, Yea-Lee
    Chang, Hyunju
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (50): : 10616 - 10623
  • [22] Accurate band gap prediction based on an interpretable Delta-machine learning
    Zhang, Lingyao
    Su, Tianhao
    Li, Musen
    Jia, Fanhao
    Hu, Shuobo
    Zhang, Peihong
    Ren, Wei
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [23] Accurate prediction of band gap of materials using stacking machine learning model
    Wang, Teng
    Zhang, Kefei
    The, Jesse
    Yu, Hesheng
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 201
  • [24] Machine-Learning-Assisted Intelligent Processing and Optimization of Complex Systems
    Luo, Xiong
    Yuan, Manman
    PROCESSES, 2023, 11 (09)
  • [25] Machine-learning-assisted materials discovery using failed experiments
    Paul Raccuglia
    Katherine C. Elbert
    Philip D. F. Adler
    Casey Falk
    Malia B. Wenny
    Aurelio Mollo
    Matthias Zeller
    Sorelle A. Friedler
    Joshua Schrier
    Alexander J. Norquist
    Nature, 2016, 533 : 73 - 76
  • [26] A Novel Algebraic Stress Model with Machine-Learning-Assisted Parameterization
    Jiang, Chao
    Mi, Junyi
    Laima, Shujin
    Li, Hui
    ENERGIES, 2020, 13 (01)
  • [27] Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays
    Luo, Yang
    Xiao, Xiao
    Chen, Jun
    Li, Qian
    Fu, Hongyan
    ACS NANO, 2022, 16 (04) : 6734 - 6743
  • [28] Retrospective machine-learning-assisted analysis of the immune infiltrate in osteosarcoma
    Stupnicki, A. D.
    Oyesola, S.
    Ryan, L.
    Butters, T.
    Flanagan, A.
    JOURNAL OF PATHOLOGY, 2024, 264 : S36 - S36
  • [29] Machine-learning-assisted low dielectric constant polymer discovery†
    Liang, Jiechun
    Xu, Shangqian
    Hu, Linfeng
    Zhao, Yu
    Zhu, Xi
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (10) : 3823 - 3829
  • [30] Machine-Learning-Assisted Design of Highly Tough Thermosetting Polymers
    Hu, Yaxi
    Zhao, Wenlin
    Wang, Liquan
    Lin, Jiaping
    Du, Lei
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (49) : 55004 - 55016