A CENTRAL LIMIT THEOREM ASSOCIATED WITH THE TRANSFORMED TWO-PARAMETER POISSON-DIRICHLET DISTRIBUTION

被引:0
|
作者
Xu, Fang [1 ,2 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Beijing Normal Univ, Beijing 100875, Peoples R China
关键词
Poisson-Dirichlet distribution; two-parameter Poisson-Dirichlet distribution; homozygosity; GEM representation; selection;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we introduce the transformed two-parameter Poisson-Dirichlet distribution Pi(sigma)(theta,alpha) on the ordered infinite simplex. Furthermore, we prove the central limit theorem related to this distribution when both the mutation rate theta and the selection rate sigma become large in a specified manner. As a consequence, we find that the properly scaled homozygosities have asymptotical normal behavior. In particular, there is a certain phase transition with the limit depending on the relative strength of sigma and theta.
引用
收藏
页码:392 / 401
页数:10
相关论文
共 50 条