Exact Simulation of Poisson-Dirichlet Distribution and Generalised Gamma Process

被引:0
|
作者
Angelos Dassios
Junyi Zhang
机构
[1] London School of Economics,Department of Statistics
[2] The Hong Kong Polytechnic University,Department of Applied Mathematics
关键词
Exact simulation; Gamma process; Generalised gamma process; Lévy process; Poisson-Dirichlet distribution; 62F15; 62G05; 60J25;
D O I
暂无
中图分类号
学科分类号
摘要
Let J1>J2>⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1>J_2>\dots $$\end{document} be the ranked jumps of a gamma process τα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _{\alpha }$$\end{document} on the time interval [0,α]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\alpha ]$$\end{document}, such that τα=∑k=1∞Jk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _{\alpha }=\sum _{k=1}^{\infty }J_k$$\end{document}. In this paper, we design an algorithm that samples from the random vector (J1,⋯,JN,∑k=N+1∞Jk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(J_1, \dots , J_N, \sum _{k=N+1}^{\infty }J_k)$$\end{document}. Our algorithm provides an analog to the well-established inverse Lévy measure (ILM) algorithm by replacing the numerical inversion of exponential integral with an acceptance-rejection step. This research is motivated by the construction of Dirichlet process prior in Bayesian nonparametric statistics. The prior assigns weight to each atom according to a GEM distribution, and the simulation algorithm enables us to sample from the N largest random weights of the prior. Then we extend the simulation algorithm to a generalised gamma process. The simulation problem of inhomogeneous processes will also be considered. Numerical implementations are provided to illustrate the effectiveness of our algorithms.
引用
收藏
相关论文
共 50 条