Asymptotic behavior of the Poisson-Dirichlet distribution for large mutation rate

被引:17
|
作者
Dawson, Donald A. [1 ]
Feng, Shui
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
来源
ANNALS OF APPLIED PROBABILITY | 2006年 / 16卷 / 02期
关键词
Poisson-Dirichlet distribution; GEM representation; homozygosity; large deviations;
D O I
10.1214/105051605000000818
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The large deviation principle is established for the Poisson-Dirichlet distribution when the parameter theta approaches infinity. The result is then used to study the asymptotic behavior of the homozygosity and the Poisson-Dirichlet distribution with selection. A phase transition occurs depending on the growth rate of the selection intensity. If the selection intensity grows sublinearly in theta, then the large deviation rate function is the same as the neutral model; if the selection intensity grows at a linear or greater rate in theta, then the large deviation rate function includes an additional term coming from selection. The application of these results to the heterozygote advantage model provides an alternate proof of one of Gillespie's conjectures in [Theoret. Popul. Biol. 55 145-1561.
引用
收藏
页码:562 / 582
页数:21
相关论文
共 50 条
  • [1] Poisson-Dirichlet distribution with small mutation rate
    Feng, Shui
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (06) : 2082 - 2094
  • [2] Asymptotic Behaviour of Poisson-Dirichlet Distribution and Random Energy Model
    Feng, Shui
    Zhou, Youzhou
    [J]. XI SYMPOSIUM ON PROBABILITY AND STOCHASTIC PROCESSES, 2015, 69 : 141 - 155
  • [3] Asymptotic results for the two-parameter Poisson-Dirichlet distribution
    Feng, Shui
    Gao, Fuqing
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (07) : 1159 - 1177
  • [4] Large deviations for Dirichlet processes and Poisson-Dirichlet distribution with two parameters
    Feng, Shui
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 787 - 807
  • [5] MODERATE DEVIATIONS FOR POISSON-DIRICHLET DISTRIBUTION
    Feng, Shui
    Ga, Fuqing
    [J]. ANNALS OF APPLIED PROBABILITY, 2008, 18 (05): : 1794 - 1824
  • [6] Large deviations associated with poisson-dirichlet distribution and ewens sampling formula
    Feng, Shui
    [J]. ANNALS OF APPLIED PROBABILITY, 2007, 17 (5-6): : 1570 - 1595
  • [7] On the Poisson-Dirichlet limit
    Gnedin, AV
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 67 (01) : 90 - 98
  • [8] Poisson-Dirichlet distribution for random Belyi surfaces
    Gamburd, Alex
    [J]. ANNALS OF PROBABILITY, 2006, 34 (05): : 1827 - 1848
  • [9] The Poisson-Dirichlet distribution and the scale-invariant Poisson process
    Arratia, R
    Barbour, AD
    Tavaré, S
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (05): : 407 - 416
  • [10] Lattice Permutations and Poisson-Dirichlet Distribution of Cycle Lengths
    Grosskinsky, Stefan
    Lovisolo, Alexander A.
    Ueltschi, Daniel
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 146 (06) : 1105 - 1121