Asymptotic Behaviour of Poisson-Dirichlet Distribution and Random Energy Model

被引:1
|
作者
Feng, Shui [1 ]
Zhou, Youzhou [2 ]
机构
[1] McMaster Univ, Dept Math & Stat, 1280 Main St W, Hamilton, ON L8S 4K1, Canada
[2] Zhongnan Univ Econ & Law, Sch Math & Stat, Wuhan 430073, Peoples R China
关键词
Dirichlet process; Large deviations; Phase transition; Poisson-Dirichlet distribution; Random energy model; STABLE SUBORDINATOR;
D O I
10.1007/978-3-319-13984-5_7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The family of Poisson-Dirichlet distributions is a collection of two-parameter probability distributions {PD(alpha, theta) : 0 <= alpha < 1, alpha + theta > 0} defined on the infinite-dimensional simplex. The parameters alpha and theta correspond to the stable and gamma component respectively. The distribution PD(alpha, 0) arises in the thermodynamic limit of the Gibbs measure of Derrida's Random Energy Model (REM) in the low temperature regime. In this setting alpha can be written as the ratio between the temperature T and a critical temperature T-c. In this paper, we study the asymptotic behaviour of PD(alpha, theta) as alpha converges to one or equivalently when the temperature approaches the critical value T-c.
引用
收藏
页码:141 / 155
页数:15
相关论文
共 50 条
  • [1] Poisson-Dirichlet distribution for random Belyi surfaces
    Gamburd, Alex
    [J]. ANNALS OF PROBABILITY, 2006, 34 (05): : 1827 - 1848
  • [2] Asymptotic results for the two-parameter Poisson-Dirichlet distribution
    Feng, Shui
    Gao, Fuqing
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (07) : 1159 - 1177
  • [3] Asymptotic behavior of the Poisson-Dirichlet distribution for large mutation rate
    Dawson, Donald A.
    Feng, Shui
    [J]. ANNALS OF APPLIED PROBABILITY, 2006, 16 (02): : 562 - 582
  • [4] POISSON-DIRICHLET BRANCHING RANDOM WALKS
    Addario-Berry, Louigi
    Ford, Kevin
    [J]. ANNALS OF APPLIED PROBABILITY, 2013, 23 (01): : 283 - 307
  • [5] MODERATE DEVIATIONS FOR POISSON-DIRICHLET DISTRIBUTION
    Feng, Shui
    Ga, Fuqing
    [J]. ANNALS OF APPLIED PROBABILITY, 2008, 18 (05): : 1794 - 1824
  • [6] On the Poisson-Dirichlet limit
    Gnedin, AV
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 67 (01) : 90 - 98
  • [7] Poisson-Dirichlet distribution with small mutation rate
    Feng, Shui
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (06) : 2082 - 2094
  • [8] The Poisson-Dirichlet distribution and the scale-invariant Poisson process
    Arratia, R
    Barbour, AD
    Tavaré, S
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (05): : 407 - 416
  • [9] On Poisson-Dirichlet limits for random decomposable combinatorial structures
    Arratia, R
    Barbour, AD
    Tavaré, S
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (03): : 193 - 208
  • [10] Lattice Permutations and Poisson-Dirichlet Distribution of Cycle Lengths
    Grosskinsky, Stefan
    Lovisolo, Alexander A.
    Ueltschi, Daniel
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2012, 146 (06) : 1105 - 1121