Bounds on the Distinguishing Chromatic Number

被引:0
|
作者
Collins, Karen L. [1 ]
Hovey, Mark [1 ]
Trenk, Ann N. [2 ]
机构
[1] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
[2] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Collins and Trenk define the distinguishing chromatic number chi(D)(G) of a graph G to be the minimum number of colors needed to properly color the vertices of G so that the only automorphism of G that preserves colors is the identity. They prove results about chi(D)(G) based on the underlying graph G. In this paper we prove results that relate chi(D)(G) to the automorphism group of G. We prove two upper bounds for chi(D)(G) in terms of the chromatic number chi(G) and show that each result is tight : (1) if Aut (G) is any finite group of order p(1)(i1)p(2)(i2) ... p(k)(ik) chi(D)(G) <= chi(G) + i(1) + i(2) ...+ i(k), and (2) if Aut(G)isafinite and abelian group written Aut(G) = Z(p1i1) x ... x Z(pkik) then we get the improved bound chi(D)(G) <= chi(G) + k. In addition, we characterize automorphism groups of graphs wit h chi(D)(G) = 2 and discuss similar results for graphs with chi(D)(G) = 3.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Improved Bounds on the Generalized Acyclic Chromatic Number
    Yu-wen WU
    Kan-ran TAN
    Gui-ying YAN
    Acta Mathematicae Applicatae Sinica, 2016, 32 (01) : 67 - 72
  • [42] Lower Bounds on the Chromatic Number of Random Graphs
    Ayre, Peter
    Coja-Oghlan, Amin
    Greenhill, Catherine
    COMBINATORICA, 2022, 42 (05) : 617 - 658
  • [43] New upper bounds for the chromatic number of a graph
    Stacho, L
    JOURNAL OF GRAPH THEORY, 2001, 36 (02) : 117 - 120
  • [44] Three new upper bounds on the chromatic number
    Soto, Maria
    Rossi, Andre
    Sevaux, Marc
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (18) : 2281 - 2289
  • [45] Improved bounds on the generalized acyclic chromatic number
    Yu-wen Wu
    Kan-ran Tan
    Gui-ying Yan
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 67 - 72
  • [46] Improving lower bounds for equitable chromatic number
    Florentin, Olariu Emanuel
    Cristian, Frasinaru
    COMPUTERS & OPERATIONS RESEARCH, 2022, 143
  • [47] Upper bounds on the linear chromatic number of a graph
    Li, Chao
    Wang, Weifan
    Raspaud, Andre
    DISCRETE MATHEMATICS, 2011, 311 (04) : 232 - 238
  • [48] Upper bounds on the locating chromatic number of trees
    Furuya, Michitaka
    Matsumoto, Naoki
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 338 - 341
  • [49] Improving lower bounds for equitable chromatic number
    Florentin, Olariu Emanuel
    Cristian, Frasinaru
    COMPUTERS & OPERATIONS RESEARCH, 2022, 143
  • [50] Lower Bounds on the Chromatic Number of Random Graphs
    Peter Ayre
    Amin Coja-Oghlan
    Catherine Greenhill
    Combinatorica, 2022, 42 : 617 - 658