Bounds on the Distinguishing Chromatic Number

被引:0
|
作者
Collins, Karen L. [1 ]
Hovey, Mark [1 ]
Trenk, Ann N. [2 ]
机构
[1] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
[2] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Collins and Trenk define the distinguishing chromatic number chi(D)(G) of a graph G to be the minimum number of colors needed to properly color the vertices of G so that the only automorphism of G that preserves colors is the identity. They prove results about chi(D)(G) based on the underlying graph G. In this paper we prove results that relate chi(D)(G) to the automorphism group of G. We prove two upper bounds for chi(D)(G) in terms of the chromatic number chi(G) and show that each result is tight : (1) if Aut (G) is any finite group of order p(1)(i1)p(2)(i2) ... p(k)(ik) chi(D)(G) <= chi(G) + i(1) + i(2) ...+ i(k), and (2) if Aut(G)isafinite and abelian group written Aut(G) = Z(p1i1) x ... x Z(pkik) then we get the improved bound chi(D)(G) <= chi(G) + k. In addition, we characterize automorphism groups of graphs wit h chi(D)(G) = 2 and discuss similar results for graphs with chi(D)(G) = 3.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Distinguishing chromatic number of random Cayley graphs
    Balachandran, Niranjan
    Padinhatteeri, Sajith
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2447 - 2455
  • [32] On the distinguishing chromatic number of the Kronecker products of graphs
    Rastgar, Zinat
    Khashyarmanesh, Kazem
    Afkhami, Mojgan
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 63 - 70
  • [33] The adjacent vertex distinguishing total chromatic number
    Coker, Tom
    Johannson, Karen
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2741 - 2750
  • [34] DISTINGUISHING CHROMATIC NUMBER OF CARTESIAN PRODUCTS OF GRAPHS
    Choi, Jeong Ok
    Hartke, Stephen G.
    Kaul, Hemanshu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 82 - 100
  • [35] A NOTE ON THE LINE-DISTINGUISHING CHROMATIC NUMBER AND THE CHROMATIC INDEX OF A GRAPH
    SALVI, NZ
    JOURNAL OF GRAPH THEORY, 1993, 17 (05) : 589 - 591
  • [36] Communication lower bounds via the chromatic number
    Kumar, Ravi
    Sivakumar, D.
    FSTTCS 2007: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2007, 4855 : 228 - +
  • [37] Some bounds on the injective chromatic number of graphs
    Doyon, Alain
    Hahn, Gena
    Raspaud, Andre
    DISCRETE MATHEMATICS, 2010, 310 (03) : 585 - 590
  • [38] Improved Bounds on the Generalized Acyclic Chromatic Number
    Wu, Yu-wen
    Tan, Kan-ran
    Yan, Gui-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (01): : 67 - 72
  • [39] Bounds for the chromatic number of graphs with partial information
    Coffman, WC
    Hakimi, SL
    Schmeichel, E
    DISCRETE MATHEMATICS, 2003, 263 (1-3) : 47 - 59
  • [40] NEW DERIVATIONS OF SPECTRAL BOUNDS FOR CHROMATIC NUMBER
    SCHWENK, AJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A535 - A535