Bounds on the Distinguishing Chromatic Number

被引:0
|
作者
Collins, Karen L. [1 ]
Hovey, Mark [1 ]
Trenk, Ann N. [2 ]
机构
[1] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
[2] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Collins and Trenk define the distinguishing chromatic number chi(D)(G) of a graph G to be the minimum number of colors needed to properly color the vertices of G so that the only automorphism of G that preserves colors is the identity. They prove results about chi(D)(G) based on the underlying graph G. In this paper we prove results that relate chi(D)(G) to the automorphism group of G. We prove two upper bounds for chi(D)(G) in terms of the chromatic number chi(G) and show that each result is tight : (1) if Aut (G) is any finite group of order p(1)(i1)p(2)(i2) ... p(k)(ik) chi(D)(G) <= chi(G) + i(1) + i(2) ...+ i(k), and (2) if Aut(G)isafinite and abelian group written Aut(G) = Z(p1i1) x ... x Z(pkik) then we get the improved bound chi(D)(G) <= chi(G) + k. In addition, we characterize automorphism groups of graphs wit h chi(D)(G) = 2 and discuss similar results for graphs with chi(D)(G) = 3.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Tight Bounds on the Clique Chromatic Number
    Joret, Gwenael
    Micek, Piotr
    Reed, Bruce
    Smid, Michiel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [22] BOUNDS FOR THE HARMONIOUS CHROMATIC NUMBER OF A GRAPH
    KRASIKOV, I
    RODITTY, Y
    JOURNAL OF GRAPH THEORY, 1994, 18 (02) : 205 - 209
  • [23] UNIFIED SPECTRAL BOUNDS ON THE CHROMATIC NUMBER
    Elphick, Clive
    Wocjan, Pawel
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 773 - 780
  • [24] On Lower Bounds for the Chromatic Number of Spheres
    Kostina, O. A.
    MATHEMATICAL NOTES, 2019, 105 (1-2) : 16 - 27
  • [25] On lower bounds for the chromatic number of sphere
    Kostina, O. A.
    Raigorodskii, A. M.
    DOKLADY MATHEMATICS, 2015, 92 (01) : 500 - 502
  • [26] On lower bounds for the chromatic number of sphere
    O. A. Kostina
    A. M. Raigorodskii
    Doklady Mathematics, 2015, 92 : 500 - 502
  • [27] Upper bounds of dynamic chromatic number
    Lai, HJ
    Montgomery, B
    Poon, H
    ARS COMBINATORIA, 2003, 68 : 193 - 201
  • [28] Improved bounds for the chromatic number of a graph
    Hakimi, SL
    Schmeichel, E
    JOURNAL OF GRAPH THEORY, 2004, 47 (03) : 217 - 225
  • [29] On Lower Bounds for the Chromatic Number of Spheres
    O. A. Kostina
    Mathematical Notes, 2019, 105 : 16 - 27
  • [30] Algorithmic bounds on the chromatic number of a graph
    Borowiecki, Piotr
    PROCEEDINGS OF THE 2008 1ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, 2008, : 285 - 288