On lower bounds for the chromatic number of sphere

被引:2
|
作者
Kostina, O. A. [1 ]
Raigorodskii, A. M. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Mech & Math Fac, Moscow 119991, Russia
[2] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
FORBIDDEN INTERSECTIONS; DISTANCE GRAPHS; HYPERGRAPH; SPACE; EDGES;
D O I
10.1134/S1064562415040298
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New lower bounds are obtained in Erdos' classical problem about the minimum number of colors required to color any sphere of given radius in Euclidean n-space so that the distance between any two points of the same color does not equal 1.
引用
收藏
页码:500 / 502
页数:3
相关论文
共 50 条
  • [1] On lower bounds for the chromatic number of sphere
    O. A. Kostina
    A. M. Raigorodskii
    [J]. Doklady Mathematics, 2015, 92 : 500 - 502
  • [2] On Lower Bounds for the Chromatic Number of Spheres
    Kostina, O. A.
    [J]. MATHEMATICAL NOTES, 2019, 105 (1-2) : 16 - 27
  • [3] On Lower Bounds for the Chromatic Number of Spheres
    O. A. Kostina
    [J]. Mathematical Notes, 2019, 105 : 16 - 27
  • [4] Communication lower bounds via the chromatic number
    Kumar, Ravi
    Sivakumar, D.
    [J]. FSTTCS 2007: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2007, 4855 : 228 - +
  • [5] Lower Bounds on the Chromatic Number of Random Graphs
    Ayre, Peter
    Coja-Oghlan, Amin
    Greenhill, Catherine
    [J]. COMBINATORICA, 2022, 42 (05) : 617 - 658
  • [6] Improving lower bounds for equitable chromatic number
    Florentin, Olariu Emanuel
    Cristian, Frasinaru
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2022, 143
  • [7] Improving lower bounds for equitable chromatic number
    Florentin, Olariu Emanuel
    Cristian, Frasinaru
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2022, 143
  • [8] Lower Bounds on the Chromatic Number of Random Graphs
    Peter Ayre
    Amin Coja-Oghlan
    Catherine Greenhill
    [J]. Combinatorica, 2022, 42 : 617 - 658
  • [9] Towards optimal lower bounds for clique and chromatic number
    Engebretsen, L
    Holmerin, J
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 299 (1-3) : 537 - 584
  • [10] On lower bounds for the chromatic number in terms of vertex degree
    Zaker, Manouchehr
    [J]. DISCRETE MATHEMATICS, 2011, 311 (14) : 1365 - 1370