Lower Bounds on the Chromatic Number of Random Graphs

被引:0
|
作者
Peter Ayre
Amin Coja-Oghlan
Catherine Greenhill
机构
[1] UNSW Sydney,School of Mathematics and Statistics
[2] TU Dortmund Faculty for Computer Science,undefined
来源
Combinatorica | 2022年 / 42卷
关键词
05C80;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a formula predicted on the basis of non-rigorous physics arguments [Zdeborová and Krzakala: Phys. Rev. E (2007)] provides a lower bound on the chromatic number of sparse random graphs. The proof is based on the interpolation method from mathematical physics. In the case of random regular graphs the lower bound can be expressed algebraically, while in the case of the binomial random we obtain a variational formula. As an application we calculate improved explicit lower bounds on the chromatic number of random graphs for small (average) degrees. Additionally, we show how asymptotic formulas for large degrees that were previously obtained by lengthy and complicated combinatorial arguments can be re-derived easily from these new results.
引用
收藏
页码:617 / 658
页数:41
相关论文
共 50 条
  • [1] Lower Bounds on the Chromatic Number of Random Graphs
    Ayre, Peter
    Coja-Oghlan, Amin
    Greenhill, Catherine
    COMBINATORICA, 2022, 42 (05) : 617 - 658
  • [2] SHARP BOUNDS FOR THE CHROMATIC NUMBER OF RANDOM KNESER GRAPHS
    Kiselev, S.
    Kupavskii, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 861 - 865
  • [3] Sharp bounds for the chromatic number of random Kneser graphs
    Kiselev, Sergei
    Kupavskii, Andrey
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 157 : 96 - 122
  • [4] Lower bounds for the colored mixed chromatic number of some classes of graphs
    Fabila-Monroy, R.
    Flores, D.
    Huemer, C.
    Montejano, A.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2008, 49 (04): : 637 - 645
  • [5] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 980 - 993
  • [6] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    BOLLOBAS, B
    COMBINATORICA, 1988, 8 (01) : 49 - 55
  • [7] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    LUCZAK, T
    COMBINATORICA, 1991, 11 (01) : 45 - 54
  • [8] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 777 - +
  • [9] New bounds for the chromatic number of graphs
    Zaker, Manouchehr
    JOURNAL OF GRAPH THEORY, 2008, 58 (02) : 110 - 122
  • [10] On Lower Bounds for the Chromatic Number of Spheres
    Kostina, O. A.
    MATHEMATICAL NOTES, 2019, 105 (1-2) : 16 - 27