Lower Bounds on the Chromatic Number of Random Graphs

被引:0
|
作者
Peter Ayre
Amin Coja-Oghlan
Catherine Greenhill
机构
[1] UNSW Sydney,School of Mathematics and Statistics
[2] TU Dortmund Faculty for Computer Science,undefined
来源
Combinatorica | 2022年 / 42卷
关键词
05C80;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a formula predicted on the basis of non-rigorous physics arguments [Zdeborová and Krzakala: Phys. Rev. E (2007)] provides a lower bound on the chromatic number of sparse random graphs. The proof is based on the interpolation method from mathematical physics. In the case of random regular graphs the lower bound can be expressed algebraically, while in the case of the binomial random we obtain a variational formula. As an application we calculate improved explicit lower bounds on the chromatic number of random graphs for small (average) degrees. Additionally, we show how asymptotic formulas for large degrees that were previously obtained by lengthy and complicated combinatorial arguments can be re-derived easily from these new results.
引用
收藏
页码:617 / 658
页数:41
相关论文
共 50 条
  • [21] The concentration of the chromatic number of random graphs
    Alon, N
    Krivelevich, M
    COMBINATORICA, 1997, 17 (03) : 303 - 313
  • [22] On the Chromatic Number of Random Cayley Graphs
    Green, Ben
    COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (02): : 248 - 266
  • [23] On the chromatic number of random geometric graphs
    Colin Mcdiarmid
    Tobias Müller
    Combinatorica, 2011, 31 : 423 - 488
  • [24] The chromatic number of dense random graphs
    Heckel, Annika
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (01) : 140 - 182
  • [25] The chromatic number of random Borsuk graphs
    Kahle, Matthew
    Martinez-Figueroa, Francisco
    RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (03) : 838 - 850
  • [26] On the strong chromatic number of random graphs
    Loh, Po-Shen
    Sudakov, Benny
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (02): : 271 - 286
  • [27] The chromatic number of squares of random graphs
    Garapaty, Kalyan
    Lokshtanov, Daniel
    Maji, Hemanta K.
    Pothen, Alex
    JOURNAL OF COMBINATORICS, 2023, 14 (04) : 507 - 537
  • [28] ON THE CHROMATIC NUMBER OF RANDOM GEOMETRIC GRAPHS
    Mcdiarmid, Colin
    Muller, Tobias
    COMBINATORICA, 2011, 31 (04) : 423 - 488
  • [29] On the chromatic number of random regular graphs
    Coja-Oghlan, Amin
    Efthymiou, Charilaos
    Hetterich, Samuel
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 367 - 439
  • [30] On the Concentration of the Chromatic Number of Random Graphs
    Surya, Erlang
    Warnke, Lutz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):