On thermal stability of polydiphenylenesulfophthalide lithium salt

被引:1
|
作者
Shishlov, N. M. [1 ]
Akhmetzyanov, Sh. S. [1 ]
Khursan, S. L. [1 ]
机构
[1] Russian Acad Sci, Ufa Inst Chem, 71 Prosp Oktyabrya, Ufa 450075, Russia
关键词
polytriarylcarbinol; polydiphenylenesulfophthalide; thermolysis; radicals; dissociation energies; IR spectra; electronic spectra; DFT calculations; NAFION; DEGRADATION; HYDRATION; WATER;
D O I
10.1007/s11172-016-1603-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermolysis of polytriarylcarbinol (PTAC-Li) (lithium salt of polydiphenylenesulfophthalide (PDSP)) was studied in the temperature range from 100 to 500 A degrees D<inverted exclamation> by thermogravimetric analysis (TG) and IR and electronic spectroscopy to check the available data on the higher thermal stability of PDSP salts over the initial polymer. The mass losses detected by the TG method in the polymer salt at 80-150 and 240-350 A degrees D are mainly caused by the desorption of weakly and strongly bound water. According to the calculations in the B3LYP/6-311+G(d,p) approximation, the D-DDe and C-SO (3) (-) Li+ bonds are weakest in the carbinol model for PTAC-Li (D(C-O) = D(C-S) = 72 kcal mol(-1)). The thermolysis of PDSP is accompanied by SO2 evolution, whereas hydroxy and sulfo groups detached from PTAC-Li macromolecules remain in the thermolyzate. Phenol fragments and an inorganic phase, the final form of which is lithium sulfate, are formed in this process. An analysis of the IR and UV spectra of the thermolyzates of PTAC-Li and PDSP confirmed that fluorenyl fragments are predominantly formed upon the thermolysis of these polymers. The data obtained do not confirm a higher stability of PTAC-Li compared to that of PDSP.
引用
收藏
页码:2437 / 2443
页数:7
相关论文
共 50 条
  • [41] Thermal stability and flame retardancy of PET/magnesium salt composites
    Liu, Haiming
    Wang, Rui
    Xu, Xi
    POLYMER DEGRADATION AND STABILITY, 2010, 95 (09) : 1466 - 1470
  • [42] THERMAL STABILITY OF INFECTIOUS BRONCHITIS VIRUS IN PRESENCE OF SALT SOLUTIONS
    HOPKINS, SR
    AVIAN DISEASES, 1967, 11 (02) : 261 - &
  • [43] Thermal stability of a new family of lithium salts for lithium-ion batteries.
    Barbarich, TJ
    Izquierdo, S
    Driscoll, PF
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U1537 - U1537
  • [44] Thermal stability of thin Au films deposited on salt whiskers
    Almog, Ehud
    Derkach, Vadim
    Sharma, Amit
    Novick-Cohen, Amy
    Greer, Julia R.
    Rabkin, Eugen
    ACTA MATERIALIA, 2021, 205
  • [45] Effect of salt and organic solvents on DNA thermal stability and structure
    Sorokin, VA
    Gladchenko, GO
    Valeev, VA
    Sysa, IV
    Petrova, LG
    Blagoi, YP
    JOURNAL OF MOLECULAR STRUCTURE, 1997, 408 : 237 - 240
  • [46] High-temperature thermal stability of molten salt materials
    Peng, Qiang
    Wei, Xiaolan
    Ding, Jing
    Yang, Jianping
    Yang, Xiaoxi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2008, 32 (12) : 1164 - 1174
  • [47] Thermal stability evaluation of lithium-ion polymer batteries
    Jhang, Wun-Cheng
    Chen, Wei-Chun
    Wang, Yih-Wen
    Chang, Ron-Hsin
    Shu, Chi-Min
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 122 (03) : 1099 - 1105
  • [48] THERMAL-STABILITY OF LIVING POLYMER-LITHIUM SYSTEMS
    KERN, WJ
    ANDERSON, JN
    ADAMS, HE
    BOUTON, TC
    BETHEA, TW
    JOURNAL OF APPLIED POLYMER SCIENCE, 1972, 16 (12) : 3123 - 3131
  • [49] Thermal stability evaluation of lithium-ion polymer batteries
    Wun-Cheng Jhang
    Wei-Chun Chen
    Yih-Wen Wang
    Ron-Hsin Chang
    Chi-Min Shu
    Journal of Thermal Analysis and Calorimetry, 2015, 122 : 1099 - 1105
  • [50] The thermal stability of lithium-manganese-oxide spinel phases
    Thackeray, MM
    Mansuetto, MF
    Dees, DW
    Vissers, DR
    MATERIALS RESEARCH BULLETIN, 1996, 31 (02) : 133 - 140