On thermal stability of polydiphenylenesulfophthalide lithium salt

被引:1
|
作者
Shishlov, N. M. [1 ]
Akhmetzyanov, Sh. S. [1 ]
Khursan, S. L. [1 ]
机构
[1] Russian Acad Sci, Ufa Inst Chem, 71 Prosp Oktyabrya, Ufa 450075, Russia
关键词
polytriarylcarbinol; polydiphenylenesulfophthalide; thermolysis; radicals; dissociation energies; IR spectra; electronic spectra; DFT calculations; NAFION; DEGRADATION; HYDRATION; WATER;
D O I
10.1007/s11172-016-1603-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermolysis of polytriarylcarbinol (PTAC-Li) (lithium salt of polydiphenylenesulfophthalide (PDSP)) was studied in the temperature range from 100 to 500 A degrees D<inverted exclamation> by thermogravimetric analysis (TG) and IR and electronic spectroscopy to check the available data on the higher thermal stability of PDSP salts over the initial polymer. The mass losses detected by the TG method in the polymer salt at 80-150 and 240-350 A degrees D are mainly caused by the desorption of weakly and strongly bound water. According to the calculations in the B3LYP/6-311+G(d,p) approximation, the D-DDe and C-SO (3) (-) Li+ bonds are weakest in the carbinol model for PTAC-Li (D(C-O) = D(C-S) = 72 kcal mol(-1)). The thermolysis of PDSP is accompanied by SO2 evolution, whereas hydroxy and sulfo groups detached from PTAC-Li macromolecules remain in the thermolyzate. Phenol fragments and an inorganic phase, the final form of which is lithium sulfate, are formed in this process. An analysis of the IR and UV spectra of the thermolyzates of PTAC-Li and PDSP confirmed that fluorenyl fragments are predominantly formed upon the thermolysis of these polymers. The data obtained do not confirm a higher stability of PTAC-Li compared to that of PDSP.
引用
收藏
页码:2437 / 2443
页数:7
相关论文
共 50 条
  • [11] THERMAL-STABILITY OF LITHIUM ALUMINATE
    FINN, PA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (08) : C360 - C360
  • [12] The thermal stability of lithium polymer batteries
    Song, L
    Evans, JW
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (07) : 2327 - 2334
  • [13] Problem of the lithium peroxide thermal stability
    Nefedov, R. A.
    Ferapontov, Yu A.
    Kozlova, N. P.
    2ND INTERNATIONAL SYMPOSIUM ON FUNDAMENTAL ASPECTS OF RARE-EARTH ELEMENTS MINING AND SEPARATION AND MODERN MATERIALS ENGINEERING (REES-2015), 2016, 112
  • [14] THERMAL STABILITY OF MENGO AND POLIOVIRUS IN HYPERTONIC SALT
    SPEIR, RW
    VIROLOGY, 1961, 14 (03) : 382 - &
  • [15] Effect of salt on the thermal stability of collagen in solution
    Brown, EM
    Wildermuth, RJ
    FASEB JOURNAL, 1999, 13 (07): : A1571 - A1571
  • [16] Thermal stability of flavianic acid disodium salt
    Fu, Zhi-Min
    Iwata, Yusaku
    Koseki, Hiroshi
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS, 2009, 70 (5-6) : 128 - 133
  • [17] Studies on the thermal stability of bitumen salt mixtures
    Zeger, J.
    Knotik, K.
    Kerntechnik und Atompraxis, 1977, 19 (04): : 188 - 195
  • [18] STUDY OF STABILITY AND THERMAL DECOMPOSITION OF LITHIUM ALANATE
    BOUSQUET, J
    BONNETOT, B
    CLAUDY, P
    BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1970, (11): : 3839 - &
  • [19] Thermal properties and stability of lithium titanophosphate glasses
    P. Mošner
    K. Vosejpková
    L. Koudelka
    Journal of Thermal Analysis and Calorimetry, 2009, 95 : 53 - 58
  • [20] PREPARATION AND THERMAL STABILITY OF LITHIUM TITANIUM FLUORIDE
    JANZ, GJ
    LORENZ, MR
    BROWN, CT
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (16) : 4126 - 4128