On thermal stability of polydiphenylenesulfophthalide lithium salt

被引:1
|
作者
Shishlov, N. M. [1 ]
Akhmetzyanov, Sh. S. [1 ]
Khursan, S. L. [1 ]
机构
[1] Russian Acad Sci, Ufa Inst Chem, 71 Prosp Oktyabrya, Ufa 450075, Russia
关键词
polytriarylcarbinol; polydiphenylenesulfophthalide; thermolysis; radicals; dissociation energies; IR spectra; electronic spectra; DFT calculations; NAFION; DEGRADATION; HYDRATION; WATER;
D O I
10.1007/s11172-016-1603-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermolysis of polytriarylcarbinol (PTAC-Li) (lithium salt of polydiphenylenesulfophthalide (PDSP)) was studied in the temperature range from 100 to 500 A degrees D<inverted exclamation> by thermogravimetric analysis (TG) and IR and electronic spectroscopy to check the available data on the higher thermal stability of PDSP salts over the initial polymer. The mass losses detected by the TG method in the polymer salt at 80-150 and 240-350 A degrees D are mainly caused by the desorption of weakly and strongly bound water. According to the calculations in the B3LYP/6-311+G(d,p) approximation, the D-DDe and C-SO (3) (-) Li+ bonds are weakest in the carbinol model for PTAC-Li (D(C-O) = D(C-S) = 72 kcal mol(-1)). The thermolysis of PDSP is accompanied by SO2 evolution, whereas hydroxy and sulfo groups detached from PTAC-Li macromolecules remain in the thermolyzate. Phenol fragments and an inorganic phase, the final form of which is lithium sulfate, are formed in this process. An analysis of the IR and UV spectra of the thermolyzates of PTAC-Li and PDSP confirmed that fluorenyl fragments are predominantly formed upon the thermolysis of these polymers. The data obtained do not confirm a higher stability of PTAC-Li compared to that of PDSP.
引用
收藏
页码:2437 / 2443
页数:7
相关论文
共 50 条
  • [21] The nature and effects of the thermal stability of lithium hydroxide
    Dinh, LN
    McLean, W
    Schildbach, MA
    LeMay, JD
    Siekhaus, WJ
    Balooch, M
    JOURNAL OF NUCLEAR MATERIALS, 2003, 317 (2-3) : 175 - 188
  • [22] Thermal properties and stability of lithium titanophosphate glasses
    Mosner, P.
    Vosejpkov, K.
    Koudelka, L.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2009, 95 (01) : 53 - 58
  • [23] THE VAPORIZATION AND THERMAL-STABILITY OF LITHIUM MOLYBDATES
    IKEDA, Y
    ITO, H
    MIZUNO, T
    MATSUMOTO, G
    JOURNAL OF NUCLEAR MATERIALS, 1982, 105 (01) : 103 - 112
  • [24] Thermal Stability Analysis of Lithium-Ion Battery Electrolytes Based on Lithium Bis(trifluoromethanesulfonyl)imide-Lithium Difluoro(oxalato)Borate Dual-Salt
    Yang, Ya-Ping
    Huang, An-Chi
    Tang, Yan
    Liu, Ye-Cheng
    Wu, Zhi-Hao
    Zhou, Hai-Lin
    Li, Zhi-Ping
    Shu, Chi-Min
    Jiang, Jun-Cheng
    Xing, Zhi-Xiang
    POLYMERS, 2021, 13 (05) : 1 - 12
  • [25] Theoretical study on thermal stability of molten salt for solar thermal power
    Wei, Xiaolan
    Peng, Qiang
    Ding, Jing
    Yang, Xiaoxi
    Yang, Jianping
    Long, Bin
    APPLIED THERMAL ENGINEERING, 2013, 54 (01) : 140 - 144
  • [26] DFT analysis of the structure and IR spectrum of potassium salt of diphenylsulfophthalide - A model compound for polydiphenylenesulfophthalide salts
    Shishlov, N. M.
    Akhmetzyanov, Sh S.
    Khursan, S. L.
    JOURNAL OF MOLECULAR STRUCTURE, 2017, 1130 : 963 - 973
  • [27] Synthesis and thermal stability of cubic ZnO in the salt nanocomposites
    Sokolov, P. S.
    Baranov, A. N.
    Dobrokhotova, Zh. V.
    Solozhenko, V. L.
    RUSSIAN CHEMICAL BULLETIN, 2010, 59 (02) : 325 - 328
  • [28] Synthesis and thermal stability of cubic ZnO in the salt nanocomposites
    P. S. Sokolov
    A. N. Baranov
    Zh. V. Dobrokhotov
    V. L. Solozhenko
    Russian Chemical Bulletin, 2010, 59 : 325 - 328
  • [29] Investigation on thermal stability of flavianic acid disodium salt
    Fu, Zhi-Min
    Koseki, Hiroshi
    Iwata, Yusaku
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2009, 22 (04) : 477 - 483
  • [30] Review of stability and thermal conductivity enhancements for salt hydrates
    Kumar, Navin
    Hirschey, Jason
    LaClair, Tim J.
    Gluesenkamp, Kyle R.
    Graham, Samuel
    JOURNAL OF ENERGY STORAGE, 2019, 24