Parameter identification of an unconfined aquifer using extended Kalman filter

被引:0
|
作者
Yeh, HD [1 ]
Leng, CH [1 ]
机构
[1] Natl Chiao Tung Univ, Inst Environm Engn, Hsinchu, Taiwan
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method using extended Kalman filter (EKF) and cubic spline is proposed to identify the aquifer parameters of an unconfined aquifer system. Neuman's model combined with EKF, using the interpolated drawdown data produced by cubic spline, can optimally determine the parameters for unconfined aquifers through the recursive filtering process. The proposed method can quickly identify the parameters, using only part of observed drawdown data, and achieves good accuracy. Thus, the lengthy pumping test may be shortened. In addition, the comparisons of results among using conventional graphical methods, nonlinear least-squares combined with finite-difference Newton's method (NLN), and EKF are presented. The EKF is shown to allow a wider range of initial guess values, though the results are slightly less accurate than those by NLN, but much more accurate than those by graphical methods. Finally, the identification process of specific yield reflects the effect of gravity drainage on the drawdown curve and conforms to the physical nature of an unconfined aquifer, when determining the aquifer parameters.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 50 条
  • [41] Aquifer parameter estimation by extended Kalman filtering and boundary elements
    ElHarrouni, K
    Ouazar, D
    Wrobel, LC
    Cheng, AHD
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1997, 19 (03) : 231 - 237
  • [42] THE MODIFIED GAIN EXTENDED KALMAN FILTER AND PARAMETER-IDENTIFICATION IN LINEAR-SYSTEMS
    SONG, TL
    SPEYER, JL
    [J]. AUTOMATICA, 1986, 22 (01) : 59 - 75
  • [43] Model prediction torque control of PMSM based on extended Kalman filter parameter identification
    Li H.
    Xu H.
    Xu Y.
    [J]. Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2023, 27 (09): : 19 - 30
  • [44] Parameter Identification and Test of Dynamic Model for Supercapacitors Based on Extended Kalman Filter Method
    Chen, Lang
    Xie, Changjun
    Liu, Xia
    Shi, Ying
    Huang, Liang
    [J]. 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING (ICECE 2019), 2019, : 381 - 386
  • [45] Using Branch Current Measurements for Parameter Identification in Extended Kalman Filter based Distribution System State Estimation
    Cetenovic, Dragan
    Rankovic, Aleksandar
    Zhao, Junbo
    Terzija, Vladimir
    Huang, Can
    [J]. 2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [46] Transport Parameter Estimations of Plasma Transport Dynamics Using the Extended Kalman Filter
    Xu, Chao
    Ou, Yongsheng
    Schuster, Eugenio
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (03) : 359 - 364
  • [47] Parameter Estimation of Electric Water Heater Models Using Extended Kalman Filter
    Zuniga, Maria
    Agbossou, Kodjo
    Cardenas, Alben
    Boulon, Loic
    [J]. IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 386 - 391
  • [48] Elastic Modulus Estimation Using a Scaled State Parameter in the Extended Kalman Filter
    Koch, M. C.
    Murakami, A.
    Fujisawa, K.
    [J]. GEOTECHNICS FOR NATURAL DISASTER MITIGATION AND MANAGEMENT, 2020, : 43 - 51
  • [49] ADAPTIVE SYNCHRONIZATION AND CHANNEL PARAMETER-ESTIMATION USING AN EXTENDED KALMAN FILTER
    AGHAMOHAMMADI, A
    MEYR, H
    ASCHEID, G
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1989, 37 (11) : 1212 - 1219
  • [50] Parameter estimation of a railway vehicle running bogie using extended Kalman filter
    Zhang Zhongshun
    Xu Bowen
    Ma Lei
    Geng Shaoyang
    [J]. 2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 3393 - 3398