Parameter identification of an unconfined aquifer using extended Kalman filter

被引:0
|
作者
Yeh, HD [1 ]
Leng, CH [1 ]
机构
[1] Natl Chiao Tung Univ, Inst Environm Engn, Hsinchu, Taiwan
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method using extended Kalman filter (EKF) and cubic spline is proposed to identify the aquifer parameters of an unconfined aquifer system. Neuman's model combined with EKF, using the interpolated drawdown data produced by cubic spline, can optimally determine the parameters for unconfined aquifers through the recursive filtering process. The proposed method can quickly identify the parameters, using only part of observed drawdown data, and achieves good accuracy. Thus, the lengthy pumping test may be shortened. In addition, the comparisons of results among using conventional graphical methods, nonlinear least-squares combined with finite-difference Newton's method (NLN), and EKF are presented. The EKF is shown to allow a wider range of initial guess values, though the results are slightly less accurate than those by NLN, but much more accurate than those by graphical methods. Finally, the identification process of specific yield reflects the effect of gravity drainage on the drawdown curve and conforms to the physical nature of an unconfined aquifer, when determining the aquifer parameters.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 50 条
  • [31] Geotechnical parameter identification of no-tension elastic-plastic model using extended Kalman filter
    Yang, C. -X.
    Wu, Y. H.
    Feng, X. -T.
    [J]. MATERIALS RESEARCH INNOVATIONS, 2011, 15 : S613 - S616
  • [32] Parameter estimation of an SMA actuator model using an extended Kalman filter
    Soltani, M.
    Bozorg, M.
    Zakerzadeh, M. R.
    [J]. MECHATRONICS, 2018, 50 : 148 - 159
  • [33] Walking parameter estimation of human leg using extended Kalman filter
    Navaneethan, S.
    Swetha, U.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 1541 - 1552
  • [34] Parameter Estimation in Systems Biology Models by Using Extended Kalman Filter
    Capinski, Michal
    Polanski, Andrzej
    [J]. MAN-MACHINE INTERACTIONS 4, ICMMI 2015, 2016, 391 : 195 - 204
  • [35] Analysis of System Identification Using the Neural Extended Kalman Filter
    Stubberud, Stephen C.
    Kramer, Kathleen A.
    [J]. ICSENG 2008: INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING, 2008, : 153 - +
  • [36] Identification of Parameters of a DC Servomotor Using the Extended Kalman Filter
    Ohtsuka, K.
    Taniguchi, T.
    Nishida, M.
    Akagi, T.
    [J]. 1995, (115):
  • [37] Progressive damage identification using dual extended Kalman filter
    Sen, Subhamoy
    Bhattacharya, Baidurya
    [J]. ACTA MECHANICA, 2016, 227 (08) : 2099 - 2109
  • [38] Leak Identification using Extended Kitanidis-Kalman Filter
    Ganesh, C.
    Ballal, Pushkar
    Bhushan, Mani
    Patwardhan, Sachin C.
    [J]. 12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2015, 37 : 1817 - 1822
  • [39] Progressive damage identification using dual extended Kalman filter
    Subhamoy Sen
    Baidurya Bhattacharya
    [J]. Acta Mechanica, 2016, 227 : 2099 - 2109
  • [40] Experience with Synchronous Generator Parameter Identification using a Kalman Filter
    Lin, Kang
    Kyriakides, Elias
    Heydt, Gerald T.
    Logic, Naim
    Singh, Bharat
    [J]. IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,