Parameter Identification and Test of Dynamic Model for Supercapacitors Based on Extended Kalman Filter Method

被引:0
|
作者
Chen, Lang [1 ]
Xie, Changjun [1 ]
Liu, Xia [1 ]
Shi, Ying [1 ]
Huang, Liang [1 ]
机构
[1] Wuhan Univ Technol, Wuhan, Peoples R China
关键词
supercapacitors model; EKF algorithm; parameter identification; UDDS conditions; BATTERIES; STATE;
D O I
10.1109/icece48499.2019.9058520
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Considering the complexity of the supercapacitors model structure and the accuracy of the external feature description, the dynamic model is established as the equivalent model of the supercapacitors. The model reduces inductance on the basis of the dynamic model and determines the number of RC (Rwsistor-Capacotance) networks. Aiming at the parameter identification process, the EKF (Extended Kalman Filter) algorithm is proposed to replace the EIS (Electrochemical Impedance Spectroscopy) method, and the algorithm is simulated and experimentally verified. The simulation and experimental results show that under UDDS (Urban Dynamometer Driving Schedule) conditions, the simulated voltage value of the supercapacitors model can follow the measured voltage value well, and the error is small. The average relative error of the supercapacitors model under UDDS conditions is less than 2.14%, which verifies the accuracy and effectiveness of the proposed model and algorithm.
引用
收藏
页码:381 / 386
页数:6
相关论文
共 50 条
  • [1] Extended Kalman Filter Based Identification of Dynamic model for Underwater Robots
    Liang, Xiao
    Zhang, Jundong
    Li, Wei
    Su, Linfang
    [J]. APPLIED MECHANICS AND MECHANICAL ENGINEERING, PTS 1-3, 2010, 29-32 : 780 - +
  • [2] CONDITIONAL EXTENDED KALMAN FILTER FOR BATTERY MODEL PARAMETER IDENTIFICATION
    Li, Yonghua
    Wang, Xu
    [J]. 7TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2014, VOL 2, 2014,
  • [3] Parameter identification to motion model of UUV by extended Kalman Filter
    Xia Guihua
    Ban Ruiyang
    [J]. IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 6911 - 6915
  • [4] Paris law parameter identification based on the Extended Kalman Filter
    Melgar, M.
    Gomez-Jimenez, C.
    Cot, L. D.
    Dejean, S.
    Mabru, C.
    Martinez-Vega, J.
    [J]. CSNDD 2016 - INTERNATIONAL CONFERENCE ON STRUCTURAL NONLINEAR DYNAMICS AND DIAGNOSIS, 2016, 83
  • [5] Research on dynamic parameter identification method of shallow reservoir based on Kalman filter
    Zhang, Shaowei
    Yin, Rongwang
    [J]. International Journal of Information and Communication Technology, 2023, 22 (01) : 32 - 44
  • [6] Application of Extended Kalman Filter Techniques for Dynamic Model Parameter Calibration
    Huang, Zhenyu
    Du, Pengwei
    Kosterev, Dmitry
    Yang, Bo
    [J]. 2009 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-8, 2009, : 3256 - +
  • [7] Aquifer parameter identification using the extended Kalman filter
    Leng, CH
    Yeh, HD
    [J]. WATER RESOURCES RESEARCH, 2003, 39 (03)
  • [8] Parameter Estimations of Heston Model Based on Consistent Extended Kalman Filter
    Wang, Ximei
    He, Xingkang
    Zhao, Yanlong
    Zuo, Zhiqiang
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 14100 - 14105
  • [9] Continuous-discrete extended Kalman filter based parameter identification method for space robots in postcapture
    Zhang, Teng
    Shi, Peng
    Yang, Yang
    Li, Wenlong
    Yue, Xiaokui
    [J]. NONLINEAR DYNAMICS, 2024,
  • [10] Load Parameter Identification for Parallel Robot Manipulator Based on Extended Kalman Filter
    Song, Shijie
    Dai, Xiaolin
    Huang, Zhangchao
    Gong, Dawei
    [J]. COMPLEXITY, 2020, 2020