Aquifer parameter identification using the extended Kalman filter

被引:39
|
作者
Leng, CH [1 ]
Yeh, HD [1 ]
机构
[1] Natl Chiao Tung Univ, Inst Environm Engn, Hsinchu 300, Taiwan
关键词
parameter estimation; Kalman filter; cubic spline; groundwater; confined; aquifer; unconfined aquifer;
D O I
10.1029/2001WR000840
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[1] An approach using the extended Kalman filter (EKF) and cubic spline is proposed to identify the aquifer parameters in both confined and unconfined aquifer systems. The cubic spline applied to the observation data can generate interpolated data with uniform time intervals and facilitates the implementation of EKF. The EKF combined with the Theis solution or Neuman's model, using the interpolated drawdown data produced by cubic spline, can optimally determine the parameters through the recursive process. The proposed approach can quickly identify the parameters, using only part of observed drawdown data, and the obtained parameters are shown to have good accuracy. Thus length of time of pumping tests may be shortened. Comparisons of results from nonlinear least squares combined with finite difference Newton's method (NLN) and EKF show that the EKF allows a wider range of initial guess values than NLN and have the accuracy of the results on the same order of magnitude as that of NLN. When determining the aquifer parameters, the identification process of specific yield reflects the effect of gravity drainage on the drawdown curve and conforms to the physical nature of an unconfined aquifer. Furthermore, this study shows that EKF can be successfully applied to analyze the drawdown data even with white noises or temporally correlated noises.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Parameter identification of an unconfined aquifer using extended Kalman filter
    Yeh, HD
    Leng, CH
    [J]. DEVELOPMENT AND APPLICATION OF COMPUTER TECHNIQUES TO ENVIRONMENTAL STUDIES, 2002, 9 : 425 - 432
  • [2] Reply to comment by A.F. Moench on "Aquifer parameter identification using the extended Kalman filter''
    Leng, CH
    Yeh, HD
    [J]. WATER RESOURCES RESEARCH, 2004, 40 (04)
  • [3] Ultracapacitor modelling and parameter identification using the Extended Kalman Filter
    Zhang, Lei
    Wang, Zhenpo
    Sun, Fengchun
    Dorrell, David
    [J]. 2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [4] Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter
    Zhang, Lei
    Wang, Zhenpo
    Sun, Fengchun
    Dorrell, David G.
    [J]. ENERGIES, 2014, 7 (05) : 3204 - 3217
  • [5] Identification of induction motor parameter using an Extended Kalman Filter.
    Jaramillo, R
    Alvarez, R
    Cárdenas, V
    Núñez, C
    [J]. 2004 1st International Conference on Electrical and Electronics Engineering (ICEEE), 2004, : 584 - 588
  • [6] Comment on "Aquifer parameter identification using the extended Kalman filter'' by C.H. Leng and H.D. Yeh
    Moench, AF
    [J]. WATER RESOURCES RESEARCH, 2004, 40 (04)
  • [7] Application of Extended Kalman Filter for Parameter Identification of Electric Drives
    Vosmik, David
    Sutnar, Zdenek
    Peroutka, Zdenek
    [J]. 2010 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS, 2010, : 371 - 374
  • [8] CONDITIONAL EXTENDED KALMAN FILTER FOR BATTERY MODEL PARAMETER IDENTIFICATION
    Li, Yonghua
    Wang, Xu
    [J]. 7TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2014, VOL 2, 2014,
  • [9] Paris law parameter identification based on the Extended Kalman Filter
    Melgar, M.
    Gomez-Jimenez, C.
    Cot, L. D.
    Dejean, S.
    Mabru, C.
    Martinez-Vega, J.
    [J]. CSNDD 2016 - INTERNATIONAL CONFERENCE ON STRUCTURAL NONLINEAR DYNAMICS AND DIAGNOSIS, 2016, 83
  • [10] Parameter identification to motion model of UUV by extended Kalman Filter
    Xia Guihua
    Ban Ruiyang
    [J]. IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 6911 - 6915