Aquifer parameter identification using the extended Kalman filter

被引:39
|
作者
Leng, CH [1 ]
Yeh, HD [1 ]
机构
[1] Natl Chiao Tung Univ, Inst Environm Engn, Hsinchu 300, Taiwan
关键词
parameter estimation; Kalman filter; cubic spline; groundwater; confined; aquifer; unconfined aquifer;
D O I
10.1029/2001WR000840
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[1] An approach using the extended Kalman filter (EKF) and cubic spline is proposed to identify the aquifer parameters in both confined and unconfined aquifer systems. The cubic spline applied to the observation data can generate interpolated data with uniform time intervals and facilitates the implementation of EKF. The EKF combined with the Theis solution or Neuman's model, using the interpolated drawdown data produced by cubic spline, can optimally determine the parameters through the recursive process. The proposed approach can quickly identify the parameters, using only part of observed drawdown data, and the obtained parameters are shown to have good accuracy. Thus length of time of pumping tests may be shortened. Comparisons of results from nonlinear least squares combined with finite difference Newton's method (NLN) and EKF show that the EKF allows a wider range of initial guess values than NLN and have the accuracy of the results on the same order of magnitude as that of NLN. When determining the aquifer parameters, the identification process of specific yield reflects the effect of gravity drainage on the drawdown curve and conforms to the physical nature of an unconfined aquifer. Furthermore, this study shows that EKF can be successfully applied to analyze the drawdown data even with white noises or temporally correlated noises.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Model prediction torque control of PMSM based on extended Kalman filter parameter identification
    Li, Hongfeng
    Xu, Haobo
    Xu, Yue
    [J]. Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2023, 27 (09): : 19 - 30
  • [42] Using Branch Current Measurements for Parameter Identification in Extended Kalman Filter based Distribution System State Estimation
    Cetenovic, Dragan
    Rankovic, Aleksandar
    Zhao, Junbo
    Terzija, Vladimir
    Huang, Can
    [J]. 2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [43] Transport Parameter Estimations of Plasma Transport Dynamics Using the Extended Kalman Filter
    Xu, Chao
    Ou, Yongsheng
    Schuster, Eugenio
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (03) : 359 - 364
  • [44] Parameter Estimation of Electric Water Heater Models Using Extended Kalman Filter
    Zuniga, Maria
    Agbossou, Kodjo
    Cardenas, Alben
    Boulon, Loic
    [J]. IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 386 - 391
  • [45] ADAPTIVE SYNCHRONIZATION AND CHANNEL PARAMETER-ESTIMATION USING AN EXTENDED KALMAN FILTER
    AGHAMOHAMMADI, A
    MEYR, H
    ASCHEID, G
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1989, 37 (11) : 1212 - 1219
  • [46] Elastic Modulus Estimation Using a Scaled State Parameter in the Extended Kalman Filter
    Koch, M. C.
    Murakami, A.
    Fujisawa, K.
    [J]. GEOTECHNICS FOR NATURAL DISASTER MITIGATION AND MANAGEMENT, 2020, : 43 - 51
  • [47] Parameter estimation of a railway vehicle running bogie using extended Kalman filter
    Zhang Zhongshun
    Xu Bowen
    Ma Lei
    Geng Shaoyang
    [J]. 2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 3393 - 3398
  • [48] STRUCTURAL IDENTIFICATION BY EXTENDED KALMAN FILTER.
    Hoshiya, Masaru
    Saito, Etsuro
    [J]. 1757, (110):
  • [49] Vehicle Inertial Parameter Identification using Extended and Unscented Kalman Filters
    Hong, Sanghyun
    Smith, Tory
    Borrelli, Francesco
    Hedrick, J. Karl
    [J]. 2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 1436 - 1441
  • [50] Nonlinear system identification on shallow foundation using Extended Kalman Filter
    Kim, Dong-Kwan
    Park, Hong-Gun
    Kim, Dong-Soo
    Lee, Hyerin
    [J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2020, 128