Parameter identification of an unconfined aquifer using extended Kalman filter

被引:0
|
作者
Yeh, HD [1 ]
Leng, CH [1 ]
机构
[1] Natl Chiao Tung Univ, Inst Environm Engn, Hsinchu, Taiwan
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method using extended Kalman filter (EKF) and cubic spline is proposed to identify the aquifer parameters of an unconfined aquifer system. Neuman's model combined with EKF, using the interpolated drawdown data produced by cubic spline, can optimally determine the parameters for unconfined aquifers through the recursive filtering process. The proposed method can quickly identify the parameters, using only part of observed drawdown data, and achieves good accuracy. Thus, the lengthy pumping test may be shortened. In addition, the comparisons of results among using conventional graphical methods, nonlinear least-squares combined with finite-difference Newton's method (NLN), and EKF are presented. The EKF is shown to allow a wider range of initial guess values, though the results are slightly less accurate than those by NLN, but much more accurate than those by graphical methods. Finally, the identification process of specific yield reflects the effect of gravity drainage on the drawdown curve and conforms to the physical nature of an unconfined aquifer, when determining the aquifer parameters.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 50 条
  • [1] Aquifer parameter identification using the extended Kalman filter
    Leng, CH
    Yeh, HD
    [J]. WATER RESOURCES RESEARCH, 2003, 39 (03)
  • [2] Reply to comment by A.F. Moench on "Aquifer parameter identification using the extended Kalman filter''
    Leng, CH
    Yeh, HD
    [J]. WATER RESOURCES RESEARCH, 2004, 40 (04)
  • [3] Ultracapacitor modelling and parameter identification using the Extended Kalman Filter
    Zhang, Lei
    Wang, Zhenpo
    Sun, Fengchun
    Dorrell, David
    [J]. 2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC) ASIA-PACIFIC 2014, 2014,
  • [4] Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter
    Zhang, Lei
    Wang, Zhenpo
    Sun, Fengchun
    Dorrell, David G.
    [J]. ENERGIES, 2014, 7 (05) : 3204 - 3217
  • [5] Identification of induction motor parameter using an Extended Kalman Filter.
    Jaramillo, R
    Alvarez, R
    Cárdenas, V
    Núñez, C
    [J]. 2004 1st International Conference on Electrical and Electronics Engineering (ICEEE), 2004, : 584 - 588
  • [6] Comment on "Aquifer parameter identification using the extended Kalman filter'' by C.H. Leng and H.D. Yeh
    Moench, AF
    [J]. WATER RESOURCES RESEARCH, 2004, 40 (04)
  • [7] Application of Extended Kalman Filter for Parameter Identification of Electric Drives
    Vosmik, David
    Sutnar, Zdenek
    Peroutka, Zdenek
    [J]. 2010 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS, 2010, : 371 - 374
  • [8] CONDITIONAL EXTENDED KALMAN FILTER FOR BATTERY MODEL PARAMETER IDENTIFICATION
    Li, Yonghua
    Wang, Xu
    [J]. 7TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2014, VOL 2, 2014,
  • [9] Paris law parameter identification based on the Extended Kalman Filter
    Melgar, M.
    Gomez-Jimenez, C.
    Cot, L. D.
    Dejean, S.
    Mabru, C.
    Martinez-Vega, J.
    [J]. CSNDD 2016 - INTERNATIONAL CONFERENCE ON STRUCTURAL NONLINEAR DYNAMICS AND DIAGNOSIS, 2016, 83
  • [10] Parameter identification to motion model of UUV by extended Kalman Filter
    Xia Guihua
    Ban Ruiyang
    [J]. IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 6911 - 6915