Boundary layer analysis for a 2-D Keller-Segel model

被引:0
|
作者
Meng, Linlin [1 ]
Xu, Wen-Qing [2 ]
Wang, Shu [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Dept Appl Math, Beijing 100124, Peoples R China
[2] Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USA
来源
OPEN MATHEMATICS | 2020年 / 18卷
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Keller-Segel model; boundary layer phenomenon; matched asymptotic expansions; energy estimates; NAVIER-STOKES EQUATIONS; QUASI-NEUTRAL LIMIT; PARABOLIC CHEMOTAXIS SYSTEM; ZERO-VISCOSITY LIMIT; DECAYING DIFFUSIVITY; CONSUMPTION; BOUNDEDNESS; CONVERGENCE; STABILITY; FLUID;
D O I
10.1515/math-2020-0093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary layer problem of a Keller-Segel model in a domain of two space dimensions with vanishing chemical diffusion coefficient. By using the method of matched asymptotic expansions of singular perturbation theory, we construct an accurate approximate solution which incorporates the effects of boundary layers and then use the classical energy estimates to prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero.
引用
收藏
页码:1895 / 1914
页数:20
相关论文
共 50 条
  • [1] The 2-D stochastic Keller-Segel particle model: existence and uniqueness
    Cattiaux, Patrick
    Pedeches, Laure
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (01): : 447 - 463
  • [2] The stability of the Keller-Segel model
    Solis, FJ
    Cortés, JC
    Cardenas, OJ
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (9-10) : 973 - 979
  • [3] The fractional Keller-Segel model
    Escudero, Carlos
    NONLINEARITY, 2006, 19 (12) : 2909 - 2918
  • [4] Beyond the Keller-Segel model
    Romanczuk, P.
    Erdmann, U.
    Engel, H.
    Schimansky-Geier, L.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 157 : 61 - 77
  • [5] Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller-Segel model
    Jin, Hai-Yang
    Xiang, Tian
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (08) : 875 - 885
  • [6] A new analysis for the Keller-Segel model of fractional order
    Kumar, Sunil
    Kumar, Amit
    Argyros, Ioannis K.
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 213 - 228
  • [7] Chemotactic collapse for the Keller-Segel model
    Herrero, MA
    Velazquez, JJL
    JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) : 177 - 194
  • [8] THE SCALAR KELLER-SEGEL MODEL ON NETWORKS
    Borsche, R.
    Goettlich, S.
    Klar, A.
    Schillen, P.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (02): : 221 - 247
  • [9] Instability in a generalized Keller-Segel model
    De Leenheer, Patrick
    Gopalakrishnan, Jay
    Zuhr, Erica
    JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) : 974 - 991
  • [10] Decay for a Keller-Segel Chemotaxis Model
    Payne, L. E.
    Straughan, B.
    STUDIES IN APPLIED MATHEMATICS, 2009, 123 (04) : 337 - 360