Boundary layer analysis for a 2-D Keller-Segel model

被引:0
|
作者
Meng, Linlin [1 ]
Xu, Wen-Qing [2 ]
Wang, Shu [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Dept Appl Math, Beijing 100124, Peoples R China
[2] Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USA
来源
OPEN MATHEMATICS | 2020年 / 18卷
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Keller-Segel model; boundary layer phenomenon; matched asymptotic expansions; energy estimates; NAVIER-STOKES EQUATIONS; QUASI-NEUTRAL LIMIT; PARABOLIC CHEMOTAXIS SYSTEM; ZERO-VISCOSITY LIMIT; DECAYING DIFFUSIVITY; CONSUMPTION; BOUNDEDNESS; CONVERGENCE; STABILITY; FLUID;
D O I
10.1515/math-2020-0093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary layer problem of a Keller-Segel model in a domain of two space dimensions with vanishing chemical diffusion coefficient. By using the method of matched asymptotic expansions of singular perturbation theory, we construct an accurate approximate solution which incorporates the effects of boundary layers and then use the classical energy estimates to prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero.
引用
收藏
页码:1895 / 1914
页数:20
相关论文
共 50 条
  • [21] Propagation of chaos for a subcritical Keller-Segel model
    Godinho, David
    Quininao, Cristobal
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 965 - 992
  • [22] Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability
    Carrillo, Jose A.
    Li, Jingyu
    Wang, Zhi-An
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 122 (01) : 42 - 68
  • [23] Pattern formation (I): The Keller-Segel model
    Guo, Yan
    Hwang, Hyung Ju
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (07) : 1519 - 1530
  • [24] The stability and dynamics of a spike in the 1D Keller-Segel model
    Kang, K.
    Kolokolnikov, T.
    Ward, M. J.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2007, 72 (02) : 140 - 162
  • [25] The stability and dynamics of a spike in the 1D Keller-Segel model
    Kang, K.
    Kolokolnikov, T.
    Ward, M.J.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2007, 72 (02): : 140 - 162
  • [26] Global Well-Posedness and Boundary Layer Effects of Radially Symmetric Solutions for the Singular Keller-Segel Model
    Hou, Qianqian
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [27] Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system
    Hideo Kozono
    Yoshie Sugiyama
    Journal of Evolution Equations, 2008, 8 : 353 - 378
  • [28] Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system
    Kozono, Hideo
    Sugiyama, Yoshie
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (02) : 353 - 378
  • [29] Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel
    Atangana, Abdon
    Alkahtani, Badr Saad T.
    ENTROPY, 2015, 17 (06) : 4439 - 4453
  • [30] Measure Valued Solutions of the 2D Keller-Segel System
    Luckhaus, S.
    Sugiyama, Y.
    Velazquez, J. J. L.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (01) : 31 - 80