共 50 条
Boundary layer analysis for a 2-D Keller-Segel model
被引:0
|作者:
Meng, Linlin
[1
]
Xu, Wen-Qing
[2
]
Wang, Shu
[1
]
机构:
[1] Beijing Univ Technol, Coll Appl Sci, Dept Appl Math, Beijing 100124, Peoples R China
[2] Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USA
来源:
基金:
美国国家科学基金会;
北京市自然科学基金;
关键词:
Keller-Segel model;
boundary layer phenomenon;
matched asymptotic expansions;
energy estimates;
NAVIER-STOKES EQUATIONS;
QUASI-NEUTRAL LIMIT;
PARABOLIC CHEMOTAXIS SYSTEM;
ZERO-VISCOSITY LIMIT;
DECAYING DIFFUSIVITY;
CONSUMPTION;
BOUNDEDNESS;
CONVERGENCE;
STABILITY;
FLUID;
D O I:
10.1515/math-2020-0093
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study the boundary layer problem of a Keller-Segel model in a domain of two space dimensions with vanishing chemical diffusion coefficient. By using the method of matched asymptotic expansions of singular perturbation theory, we construct an accurate approximate solution which incorporates the effects of boundary layers and then use the classical energy estimates to prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero.
引用
收藏
页码:1895 / 1914
页数:20
相关论文