Boundary layer analysis for a 2-D Keller-Segel model

被引:0
|
作者
Meng, Linlin [1 ]
Xu, Wen-Qing [2 ]
Wang, Shu [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Dept Appl Math, Beijing 100124, Peoples R China
[2] Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USA
来源
OPEN MATHEMATICS | 2020年 / 18卷
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Keller-Segel model; boundary layer phenomenon; matched asymptotic expansions; energy estimates; NAVIER-STOKES EQUATIONS; QUASI-NEUTRAL LIMIT; PARABOLIC CHEMOTAXIS SYSTEM; ZERO-VISCOSITY LIMIT; DECAYING DIFFUSIVITY; CONSUMPTION; BOUNDEDNESS; CONVERGENCE; STABILITY; FLUID;
D O I
10.1515/math-2020-0093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary layer problem of a Keller-Segel model in a domain of two space dimensions with vanishing chemical diffusion coefficient. By using the method of matched asymptotic expansions of singular perturbation theory, we construct an accurate approximate solution which incorporates the effects of boundary layers and then use the classical energy estimates to prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero.
引用
收藏
页码:1895 / 1914
页数:20
相关论文
共 50 条
  • [31] Analysis of Keller-Segel Model with Atangana-Baleanu Fractional Derivative
    Dokuyucu, Mustafa Ali
    Baleanu, Dumitru
    Celik, Ercan
    FILOMAT, 2018, 32 (16) : 5633 - 5643
  • [32] The parabolic-parabolic Keller-Segel model in R2
    Calvez, Vincent
    Corrias, Lucilla
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (02) : 417 - 447
  • [33] ASSESSING THE KELLER-SEGEL MODEL - HOW HAS IT FARED
    KELLER, EF
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (03) : 567 - 568
  • [34] A DEGENERATE p-LAPLACIAN KELLER-SEGEL MODEL
    Cong, Wenting
    Liu, Jian-Guo
    KINETIC AND RELATED MODELS, 2016, 9 (04) : 687 - 714
  • [35] On the time-fractional Keller-Segel model for chemotaxis
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 769 - 798
  • [36] Convergence to diffusion waves for solutions of 1D Keller-Segel model
    Liu, Fengling
    Zhang, Nangao
    Zhu, Changjiang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3674 - 3702
  • [37] Symmetry reductions of a (2+1)-dimensional Keller-Segel model
    de la Rosa, Rafael
    Garrido, Tamra Maria
    Bruzon, Maria Santos
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (15) : 15972 - 15981
  • [38] BIFURCATION OF TRAVELING WAVES IN A KELLER-SEGEL TYPE FREE BOUNDARY MODEL OF CELL MOTILITY
    Berlyand, Leonid
    Fuhrmann, Jan
    Rybalko, Volodymyr
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (03) : 735 - 762
  • [39] TRAVELING BANDS FOR THE KELLER-SEGEL MODEL WITH POPULATION GROWTH
    Ai, Shangbing
    Wang, Zhian
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2015, 12 (04) : 717 - 737
  • [40] Threshold for shock formation in the hyperbolic Keller-Segel model
    Lee, Yongki
    Liu, Hailiang
    APPLIED MATHEMATICS LETTERS, 2015, 50 : 56 - 63