The 2-D stochastic Keller-Segel particle model: existence and uniqueness

被引:0
|
作者
Cattiaux, Patrick [1 ]
Pedeches, Laure [1 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, CNRS UMR 5219, 118 Route Narbonne, F-31062 Toulouse 09, France
关键词
Keller-Segel model; diffusion processes; Bessel processes; APPROXIMATION; PROPAGATION; EQUATIONS; SYSTEM; CHAOS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a stochastic system of interacting particles which is expected to furnish, as the number of particles goes to infinity, a stochastic approach of the 2-D Keller-Segel model. In this note, we prove existence and some uniqueness for the stochastic model for the parabolic-elliptic Keller-Segel equation, for all regimes under the critical mass. Prior results for existence and weak uniqueness have been very recently obtained by Fournier and Jourdain (2015).
引用
收藏
页码:447 / 463
页数:17
相关论文
共 50 条
  • [1] Boundary layer analysis for a 2-D Keller-Segel model
    Meng, Linlin
    Xu, Wen-Qing
    Wang, Shu
    OPEN MATHEMATICS, 2020, 18 : 1895 - 1914
  • [2] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A HYPERBOLIC KELLER-SEGEL EQUATION
    Fu, Xiaoming
    Griette, Quentin
    Magal, Pierre
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (04): : 1931 - 1966
  • [4] Existence and uniqueness of the weak solution for Keller-Segel model coupled with Boussinesq equations
    Slimani, Ali
    Bouzettouta, Lamine
    Guesmia, Amar
    DEMONSTRATIO MATHEMATICA, 2021, 54 (01) : 558 - 575
  • [5] EXISTENCE OF SOLUTIONS OF THE HYPERBOLIC KELLER-SEGEL MODEL
    Perthame, Benoit
    Dalibard, Anne-Laure
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) : 2319 - 2335
  • [6] Convergence of a Stochastic Particle Approximation for Measure Solutions of the 2D Keller-Segel System
    Haskovec, Jan
    Schmeiser, Christian
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (06) : 940 - 960
  • [7] Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System
    Haskovec, Jan
    Schmeiser, Christian
    JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (01) : 133 - 151
  • [8] Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System
    Jan Haškovec
    Christian Schmeiser
    Journal of Statistical Physics, 2009, 135 : 133 - 151
  • [9] Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system
    Hideo Kozono
    Yoshie Sugiyama
    Journal of Evolution Equations, 2008, 8 : 353 - 378
  • [10] Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system
    Kozono, Hideo
    Sugiyama, Yoshie
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (02) : 353 - 378