The 2-D stochastic Keller-Segel particle model: existence and uniqueness

被引:0
|
作者
Cattiaux, Patrick [1 ]
Pedeches, Laure [1 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, CNRS UMR 5219, 118 Route Narbonne, F-31062 Toulouse 09, France
关键词
Keller-Segel model; diffusion processes; Bessel processes; APPROXIMATION; PROPAGATION; EQUATIONS; SYSTEM; CHAOS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a stochastic system of interacting particles which is expected to furnish, as the number of particles goes to infinity, a stochastic approach of the 2-D Keller-Segel model. In this note, we prove existence and some uniqueness for the stochastic model for the parabolic-elliptic Keller-Segel equation, for all regimes under the critical mass. Prior results for existence and weak uniqueness have been very recently obtained by Fournier and Jourdain (2015).
引用
收藏
页码:447 / 463
页数:17
相关论文
共 50 条
  • [21] Stochastic homogenization of the Keller-Segel chemotaxis system
    Matzavinos, Anastasios
    Ptashnyk, Mariya
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 144 : 58 - 76
  • [22] Chemotactic collapse for the Keller-Segel model
    Herrero, MA
    Velazquez, JJL
    JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) : 177 - 194
  • [23] Existence of multi-spikes in the Keller-Segel model with logistic growth
    Kong, Fanze
    Wei, Juncheng
    Xu, Liangshun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (11): : 2227 - 2270
  • [24] THE SCALAR KELLER-SEGEL MODEL ON NETWORKS
    Borsche, R.
    Goettlich, S.
    Klar, A.
    Schillen, P.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (02): : 221 - 247
  • [25] GLOBAL EXISTENCE OF SOLUTIONS TO A KELLER-SEGEL MODEL WITH LOGISTIC SOURCE IN R2
    Wang, Jinhuan
    Chen, Haomeng
    Zhuang, Mengdi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [26] Global Existence and Decay of Solution to Parabolic-Parabolic Keller-Segel Model in R~d
    钟文彬
    刘晓风
    Journal of Donghua University(English Edition), 2022, 39 (01) : 85 - 94
  • [27] Instability in a generalized Keller-Segel model
    De Leenheer, Patrick
    Gopalakrishnan, Jay
    Zuhr, Erica
    JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) : 974 - 991
  • [28] Decay for a Keller-Segel Chemotaxis Model
    Payne, L. E.
    Straughan, B.
    STUDIES IN APPLIED MATHEMATICS, 2009, 123 (04) : 337 - 360
  • [29] Refined hyper-contractivity and uniqueness for the Keller-Segel equations
    Liu, Jian-Guo
    Wang, Jinhuan
    APPLIED MATHEMATICS LETTERS, 2016, 52 : 212 - 219
  • [30] Uniqueness of stationary states for singular Keller-Segel type models
    Calvez, Vincent
    Carrillo, Jose Antonio
    Hoffmann, Franca
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 205