Uniqueness of stationary states for singular Keller-Segel type models

被引:4
|
作者
Calvez, Vincent [1 ,2 ]
Carrillo, Jose Antonio [3 ]
Hoffmann, Franca [4 ]
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 5669, Unite Math Pures & Appl, Lyon, France
[2] Ecole Normale Super Lyon, Eguipe Projet INRIA NUMED, Lyon, France
[3] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[4] CALTECH, Dept Comp & Math Sci, 1200 E Calif Blvd MC 305-16, Pasadena, CA 91125 USA
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
uniqueness; Hardy-Littlewood-Sobolev inequality; aggregation-diffusion; Keller-Segel model; ASYMPTOTIC-BEHAVIOR; DEGENERATE DIFFUSION; CRITICAL MASS; EQUATION; SYSTEM;
D O I
10.1016/j.na.2020.112222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a generalised Keller-Segel model with non-linear porous medium type diffusion and non-local attractive power law interaction, focusing on potentials that are more singular than Newtonian interaction. We show uniqueness of stationary states (if they exist) in any dimension both in the diffusion-dominated regime and in the fair-competition regime when attraction and repulsion are in balance. As stationary states are radially symmetric decreasing, the question of uniqueness reduces to the radial setting. Our key result is a sharp generalised Hardy-Littlewood-Sobolev type functional inequality in the radial setting. (C) 2020 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] SINGULAR CONVERGENCE OF NONLINEAR HYPERBOLIC CHEMOTAXIS SYSTEMS TO KELLER-SEGEL TYPE MODELS
    Di Francesco, Marco
    Donatelli, Donatella
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 13 (01): : 79 - 100
  • [2] Uniqueness theorem on weak solutions to the Keller-Segel system of degenerate and singular types
    Kawakami, Tatsuki
    Sugiyama, Yoshie
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) : 4683 - 4716
  • [3] Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth
    Wang, Qi
    Yan, Jingda
    Gai, Chunyi
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [4] Stationary solutions to a Keller-Segel chemotaxis system
    Musso, Monica
    Wei, Juncheng
    [J]. ASYMPTOTIC ANALYSIS, 2006, 49 (3-4) : 217 - 247
  • [5] Keller-Segel Chemotaxis Models: A Review
    Arumugam, Gurusamy
    Tyagi, Jagmohan
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [6] Keller-Segel Chemotaxis Models: A Review
    Gurusamy Arumugam
    Jagmohan Tyagi
    [J]. Acta Applicandae Mathematicae, 2021, 171
  • [7] UNIQUENESS FOR KELLER-SEGEL-TYPE CHEMOTAXIS MODELS
    Carrillo, Jose Antonio
    Lisini, Stefano
    Mainini, Edoardo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (04) : 1319 - 1338
  • [8] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A HYPERBOLIC KELLER-SEGEL EQUATION
    Fu, Xiaoming
    Griette, Quentin
    Magal, Pierre
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (04): : 1931 - 1966
  • [9] BOUNDARY LAYERS AND STABILIZATION OF THE SINGULAR KELLER-SEGEL SYSTEM
    Peng, Hongyun
    Wang, Zhi-An
    Zhao, Kun
    Zhu, Changjiang
    [J]. KINETIC AND RELATED MODELS, 2018, 11 (05) : 1085 - 1123
  • [10] Singular patterns in Keller-Segel-type models
    Campos, Juan
    Pulido, Carlos
    Soler, Juan
    Veruete, Mario
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (08): : 1693 - 1719