Uniqueness of stationary states for singular Keller-Segel type models

被引:4
|
作者
Calvez, Vincent [1 ,2 ]
Carrillo, Jose Antonio [3 ]
Hoffmann, Franca [4 ]
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 5669, Unite Math Pures & Appl, Lyon, France
[2] Ecole Normale Super Lyon, Eguipe Projet INRIA NUMED, Lyon, France
[3] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[4] CALTECH, Dept Comp & Math Sci, 1200 E Calif Blvd MC 305-16, Pasadena, CA 91125 USA
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
uniqueness; Hardy-Littlewood-Sobolev inequality; aggregation-diffusion; Keller-Segel model; ASYMPTOTIC-BEHAVIOR; DEGENERATE DIFFUSION; CRITICAL MASS; EQUATION; SYSTEM;
D O I
10.1016/j.na.2020.112222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a generalised Keller-Segel model with non-linear porous medium type diffusion and non-local attractive power law interaction, focusing on potentials that are more singular than Newtonian interaction. We show uniqueness of stationary states (if they exist) in any dimension both in the diffusion-dominated regime and in the fair-competition regime when attraction and repulsion are in balance. As stationary states are radially symmetric decreasing, the question of uniqueness reduces to the radial setting. Our key result is a sharp generalised Hardy-Littlewood-Sobolev type functional inequality in the radial setting. (C) 2020 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:24
相关论文
共 50 条