Compactly Supported Stationary States of the Degenerate Keller-Segel System in the Diffusion-Dominated Regime

被引:7
|
作者
Carrillo, Jose A. [1 ]
Sugiyama, Yoshie [2 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Kyushu Univ, Fac Math, Fukuoka, Fukuoka 8190395, Japan
基金
英国工程与自然科学研究理事会; 日本科学技术振兴机构;
关键词
GLOBAL EXISTENCE; BLOW-UP; CRITICAL MASS; MODEL; CHEMOTAXIS; CONVERGENCE; EQUATIONS; BEHAVIOR; DRIVEN;
D O I
10.1512/iumj.2018.67.7524
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first show the existence of a unique global minimizer of the free energy for all masses associated with a nonlinear diffusion version of the classical Keller-Segel model when the diffusion dominates over the attractive force of the chemoattractant. The strategy uses an approximation of the variational problem in the whole space by the minimization problem posed on bounded balls with large radii. We show that all stationary states in a wide class coincide up to translations with the unique global minimizer of the free energy, which is compactly supported, radially decreasing, and smooth inside its support. Our results complement and show alternative proofs with respect to [27, 30, 36].
引用
收藏
页码:2279 / 2312
页数:34
相关论文
共 50 条
  • [1] p-Laplacian Keller-Segel equation: Fair competition and diffusion-dominated cases
    Lafleche, Laurent
    Salem, Samir
    [J]. COMPTES RENDUS MATHEMATIQUE, 2019, 357 (04) : 360 - 365
  • [2] ON A HYPERBOLIC KELLER-SEGEL SYSTEM WITH DEGENERATE NONLINEAR FRACTIONAL DIFFUSION
    Karlsen, Kenneth H.
    Ulusoy, Suleyman
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (01) : 181 - 201
  • [3] The variational formulation of the fully parabolic Keller-Segel system with degenerate diffusion
    Mimura, Yoshifumi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) : 1477 - 1521
  • [4] Stationary solutions to a Keller-Segel chemotaxis system
    Musso, Monica
    Wei, Juncheng
    [J]. ASYMPTOTIC ANALYSIS, 2006, 49 (3-4) : 217 - 247
  • [5] Ground states in the diffusion-dominated regime
    José A. Carrillo
    Franca Hoffmann
    Edoardo Mainini
    Bruno Volzone
    [J]. Calculus of Variations and Partial Differential Equations, 2018, 57
  • [6] Ground states in the diffusion-dominated regime
    Carrillo, Jose A.
    Hoffmann, Franca
    Mainini, Edoardo
    Volzone, Bruno
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [7] Collapsing steady states of the Keller-Segel system
    del Pino, Manuel
    Wei, Juncheng
    [J]. NONLINEARITY, 2006, 19 (03) : 661 - 684
  • [8] Multiple positive solutions of the stationary Keller-Segel system
    Bonheure, Denis
    Casteras, Jean-Baptiste
    Noris, Benedetta
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
  • [9] Uniqueness of stationary states for singular Keller-Segel type models
    Calvez, Vincent
    Carrillo, Jose Antonio
    Hoffmann, Franca
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 205
  • [10] Numerical Simulation of Heterogeneous Steady States for a Reaction-Diffusion Degenerate Keller-Segel Model
    Chamoun, Georges
    Ibrahim, Moustafa
    Saad, Mazen
    Talhouk, Raafat
    [J]. PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2018, 2019, 30 : 411 - 417