Characterization of 1-quasi-greedy bases

被引:17
|
作者
Albiac, F. [1 ]
Ansorena, J. L. [2 ]
机构
[1] Univ Publ Navarra, Dept Math, Pamplona 31006, Spain
[2] Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain
关键词
Thresholding greedy algorithm; Quasi-greedy basis; Unconditional basis; Renorming; QUASI-GREEDY BASES; BANACH-SPACES; ALGORITHM; SYSTEMS; L(1);
D O I
10.1016/j.jat.2015.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we continue the study initiated in Albiac and Wojtaszczyk (2006) of greedy-like bases in the "isometric case", i.e., in the case that the constants that arise in the context of greedy bases in their different forms are 1. Here we settle the problem to find a satisfactory characterization of 1-quasi-greedy bases in Banach spaces. We show that a semi-normalized basis in a Banach space is quasi-greedy with quasi-greedy constant 1 if and only if it is unconditional with suppression-unconditional constant 1. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [1] Characterization of 1-greedy bases
    Albiac, F
    Wojtaszczyk, P
    JOURNAL OF APPROXIMATION THEORY, 2006, 138 (01) : 65 - 86
  • [2] Characterization of 1-almost greedy bases
    Albiac, F.
    Ansorena, J. L.
    REVISTA MATEMATICA COMPLUTENSE, 2017, 30 (01): : 13 - 24
  • [3] Characterization of 1-almost greedy bases
    F. Albiac
    J. L. Ansorena
    Revista Matemática Complutense, 2017, 30 : 13 - 24
  • [4] Weak greedy algorithms for nonlinear approximation with quasi-greedy bases
    Jingfan, Long
    Peixin, Ye
    WSEAS Transactions on Mathematics, 2014, 13 (01) : 525 - 534
  • [5] Quasi-greedy bases for sequences with gaps
    Berasategui, M.
    Berna, P. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 208
  • [6] Characterization of greedy bases in Banach spaces
    Berna, Pablo M.
    Blasco, Oscar
    JOURNAL OF APPROXIMATION THEORY, 2017, 215 : 28 - 39
  • [7] Building highly conditional almost greedy and quasi-greedy bases in Banach spaces
    Albiac, F.
    Ansorena, L.
    Dilworth, S. J.
    Kutzarova, Denka
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (06) : 1893 - 1924
  • [8] Quasi-greedy bases in lp(0 < p < 1) are democratic
    Albiac, Fernando
    Ansorena, Jose L.
    Wojtaszczyk, Przemyslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (07)
  • [9] A Functional Characterization of Almost Greedy and Partially Greedy Bases in Banach Spaces
    Manuel Berna, Pablo
    Mondejar, Diego
    MATHEMATICS, 2021, 9 (15)
  • [10] Conditional Quasi-Greedy Bases in Hilbert and Banach Spaces
    Garrigos, Gustavo
    Wojtaszczyk, Przemyslaw
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (04) : 1017 - 1036