Characterization of 1-quasi-greedy bases

被引:17
|
作者
Albiac, F. [1 ]
Ansorena, J. L. [2 ]
机构
[1] Univ Publ Navarra, Dept Math, Pamplona 31006, Spain
[2] Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain
关键词
Thresholding greedy algorithm; Quasi-greedy basis; Unconditional basis; Renorming; QUASI-GREEDY BASES; BANACH-SPACES; ALGORITHM; SYSTEMS; L(1);
D O I
10.1016/j.jat.2015.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we continue the study initiated in Albiac and Wojtaszczyk (2006) of greedy-like bases in the "isometric case", i.e., in the case that the constants that arise in the context of greedy bases in their different forms are 1. Here we settle the problem to find a satisfactory characterization of 1-quasi-greedy bases in Banach spaces. We show that a semi-normalized basis in a Banach space is quasi-greedy with quasi-greedy constant 1 if and only if it is unconditional with suppression-unconditional constant 1. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [41] Democracy of quasi-greedy bases in p-Banach spaces with applications to the efficiency of the Thresholding Greedy Algorithm in the Hardy spaces Hp(Dd)
    Albiac, Fernando
    Ansorena, Jose L.
    Bello, Glenier
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (03) : 906 - 928
  • [42] On certain subspaces of lp for 0 < p ≤ 1 and their applications to conditional quasi-greedy bases in p-Banach spaces
    Albiac, Fernando
    Luis Ansorena, Jose
    Wojtaszczyk, Przemyslaw
    MATHEMATISCHE ANNALEN, 2021, 379 (1-2) : 465 - 502
  • [43] A conditional quasi-greedy basis of l1
    Dilworth, SJ
    Mitra, D
    STUDIA MATHEMATICA, 2001, 144 (01) : 95 - 100
  • [44] On Weighted Greedy-Type Bases
    Chu, Hung Viet
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (04):
  • [45] Wavelets, Orlicz spaces, and greedy bases
    Garrigos, Gustavo
    Herandez, Eugenio
    Martell, Jose Maria
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 24 (01) : 70 - 93
  • [46] Weight-Almost Greedy Bases
    S. J. Dilworth
    Denka Kutzarova
    Vladimir Temlyakov
    Ben Wallis
    Proceedings of the Steklov Institute of Mathematics, 2018, 303 : 109 - 128
  • [47] Greedy bases in variable Lebesgue spaces
    David Cruz-Uribe
    Eugenio Hernández
    José María Martell
    Monatshefte für Mathematik, 2016, 179 : 355 - 378
  • [48] Greedy bases in weighted modulation spaces
    Izuki, Mitsuo
    Sawano, Yoshihiro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E2045 - E2053
  • [49] Greedy bases in variable Lebesgue spaces
    Cruz-Uribe, David
    Hernandez, Eugenio
    Maria Martell, Jose
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (03): : 355 - 378
  • [50] A remark on approximation with polynomials and greedy bases
    Berna, Pablo M.
    Perez, Antonio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (02) : 466 - 475