Characterization of 1-quasi-greedy bases

被引:17
|
作者
Albiac, F. [1 ]
Ansorena, J. L. [2 ]
机构
[1] Univ Publ Navarra, Dept Math, Pamplona 31006, Spain
[2] Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain
关键词
Thresholding greedy algorithm; Quasi-greedy basis; Unconditional basis; Renorming; QUASI-GREEDY BASES; BANACH-SPACES; ALGORITHM; SYSTEMS; L(1);
D O I
10.1016/j.jat.2015.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we continue the study initiated in Albiac and Wojtaszczyk (2006) of greedy-like bases in the "isometric case", i.e., in the case that the constants that arise in the context of greedy bases in their different forms are 1. Here we settle the problem to find a satisfactory characterization of 1-quasi-greedy bases in Banach spaces. We show that a semi-normalized basis in a Banach space is quasi-greedy with quasi-greedy constant 1 if and only if it is unconditional with suppression-unconditional constant 1. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [21] Conditional Quasi-Greedy Bases in Non-superreflexive Banach Spaces
    Albiac, Fernando
    Ansorena, Jose L.
    Wojtaszczyk, Przemyslaw
    CONSTRUCTIVE APPROXIMATION, 2019, 49 (01) : 103 - 122
  • [22] The thresholding greedy algorithm, greedy bases, and duality
    Dilworth, SJ
    Kalton, NJ
    Kutzarova, D
    Temlyakov, VN
    CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) : 575 - 597
  • [23] Characterizations of almost greedy and partially greedy bases
    Dilworth, Stephen J.
    Khurana, Divya
    JAEN JOURNAL ON APPROXIMATION, 2019, 11 (1-2): : 115 - 137
  • [24] The Thresholding Greedy Algorithm, Greedy Bases, and Duality
    S.J. Dilworth
    N.J. Kalton
    Denka Kutzarova
    V.N. Temlyakov
    Constructive Approximation, 2003, 19 : 575 - 597
  • [25] Renormings and symmetry properties of 1-greedy bases
    Dilworth, S. J.
    Odell, E.
    Schlumprecht, Th.
    Zsak, A.
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (09) : 1049 - 1075
  • [26] Conditionality constants of quasi-greedy bases in super-reflexive Banach spaces
    Albiac, F.
    Ansorena, J. L.
    Garrigos, G.
    Hernandez, E.
    Raja, M.
    STUDIA MATHEMATICA, 2015, 227 (02) : 133 - 140
  • [27] Unconditional and quasi-greedy bases in Lp with applications to Jacobi polynomials Fourier series
    Albiac, Fernando
    Ansorena, Jose L.
    Ciaurri, Oscar
    Varona, Juan L.
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (02) : 561 - 574
  • [28] Larger greedy sums for reverse partially greedy bases
    Chu, H. V.
    ANALYSIS MATHEMATICA, 2024, 50 (01) : 111 - 125
  • [29] Greedy approximation with regard to non-greedy bases
    Temlyakov, V. N.
    Yang, Mingrui
    Ye, Peixin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (03) : 319 - 337
  • [30] Larger greedy sums for reverse partially greedy bases
    H. V. Chu
    Analysis Mathematica, 2024, 50 : 111 - 125