In this note we continue the study initiated in Albiac and Wojtaszczyk (2006) of greedy-like bases in the "isometric case", i.e., in the case that the constants that arise in the context of greedy bases in their different forms are 1. Here we settle the problem to find a satisfactory characterization of 1-quasi-greedy bases in Banach spaces. We show that a semi-normalized basis in a Banach space is quasi-greedy with quasi-greedy constant 1 if and only if it is unconditional with suppression-unconditional constant 1. (C) 2015 Elsevier Inc. All rights reserved.
机构:
Univ La Rioja, Dept Math & Comp Sci, C Madre de Dios 53, Logrono 26004, SpainUniv La Rioja, Dept Math & Comp Sci, C Madre de Dios 53, Logrono 26004, Spain
机构:
Univ Autonoma Madrid, Dept Math, E-28049 Madrid, SpainUniv Autonoma Madrid, Dept Math, E-28049 Madrid, Spain
Kazarian, K.
Temlyakov, V. N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Carolina, Dept Math, Columbia, SC 29208 USA
VA Steklov Math Inst, Moscow 119991, RussiaUniv Autonoma Madrid, Dept Math, E-28049 Madrid, Spain
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, IMAS UBA CONICET Pab1, RA-1428 Buenos Aires, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, IMAS UBA CONICET Pab1, RA-1428 Buenos Aires, Argentina
Berasategui, Miguel
Berna, Pablo M.
论文数: 0引用数: 0
h-index: 0
机构:
CUNEF Univ, Dept Metodos Cuantitat, Madrid 28040, SpainUniv Buenos Aires, Fac Ciencias Exactas & Nat, IMAS UBA CONICET Pab1, RA-1428 Buenos Aires, Argentina
Berna, Pablo M.
Chu, Hung Viet
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USAUniv Buenos Aires, Fac Ciencias Exactas & Nat, IMAS UBA CONICET Pab1, RA-1428 Buenos Aires, Argentina