Characterization of 1-almost greedy bases

被引:0
|
作者
F. Albiac
J. L. Ansorena
机构
[1] Universidad Pública de Navarra,Mathematics Department
[2] Universidad de La Rioja,Department of Mathematics and Computer Sciences
来源
关键词
Thresholding greedy algorithm; Quasi-greedy basis; Almost greedy basis; Unconditional basis; Property (A); 46B15; 41A65; 46B15;
D O I
暂无
中图分类号
学科分类号
摘要
This article closes the cycle of characterizations of greedy-like bases in the “isometric” case initiated in Albiac and Wojtaszczyk (J. Approx. Theory 138(1):65–86, 2006) with the characterization of 1-greedy bases and continued in Albiac and Ansorena (J. Approx. Theory 201:7–12, 2016) with the characterization of 1-quasi-greedy bases. Here we settle the problem of providing a characterization of 1-almost greedy bases in Banach spaces. We show that a basis in a Banach space is almost greedy with almost greedy constant equal to 1 if and only if it has Property (A). This fact permits now to state that a basis is 1-greedy if and only if it is 1-almost greedy and 1-quasi-greedy. As a by-product of our work we also provide a tight estimate of the almost greedy constant of a basis in the non-isometric case.
引用
收藏
页码:13 / 24
页数:11
相关论文
共 50 条
  • [1] Characterization of 1-almost greedy bases
    Albiac, F.
    Ansorena, J. L.
    REVISTA MATEMATICA COMPLUTENSE, 2017, 30 (01): : 13 - 24
  • [2] A Functional Characterization of Almost Greedy and Partially Greedy Bases in Banach Spaces
    Manuel Berna, Pablo
    Mondejar, Diego
    MATHEMATICS, 2021, 9 (15)
  • [3] Characterizations of almost greedy and partially greedy bases
    Dilworth, Stephen J.
    Khurana, Divya
    JAEN JOURNAL ON APPROXIMATION, 2019, 11 (1-2): : 115 - 137
  • [4] Characterization of 1-greedy bases
    Albiac, F
    Wojtaszczyk, P
    JOURNAL OF APPROXIMATION THEORY, 2006, 138 (01) : 65 - 86
  • [5] Weight-Almost Greedy Bases
    S. J. Dilworth
    Denka Kutzarova
    Vladimir Temlyakov
    Ben Wallis
    Proceedings of the Steklov Institute of Mathematics, 2018, 303 : 109 - 128
  • [6] Weight-Almost Greedy Bases
    Dilworth, S. J.
    Kutzarova, Denka
    Temlyakov, Vladimir
    Wallis, Ben
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 303 (01) : 109 - 128
  • [7] Fundamental functions of almost greedy bases of Lp for 1 < p < ∞
    Ansorena, Jose L.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (03)
  • [8] Characterization of 1-quasi-greedy bases
    Albiac, F.
    Ansorena, J. L.
    JOURNAL OF APPROXIMATION THEORY, 2016, 201 : 7 - 12
  • [9] On the existence of almost greedy bases in Banach spaces
    Dilworth, SJ
    Kalton, NJ
    Kutzarova, D
    STUDIA MATHEMATICA, 2003, 159 (01) : 67 - 101
  • [10] Equivalence between almost-greedy and semi-greedy bases
    Berna, P. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) : 218 - 225