This article closes the cycle of characterizations of greedy-like bases in the “isometric” case initiated in Albiac and Wojtaszczyk (J. Approx. Theory 138(1):65–86, 2006) with the characterization of 1-greedy bases and continued in Albiac and Ansorena (J. Approx. Theory 201:7–12, 2016) with the characterization of 1-quasi-greedy bases. Here we settle the problem of providing a characterization of 1-almost greedy bases in Banach spaces. We show that a basis in a Banach space is almost greedy with almost greedy constant equal to 1 if and only if it has Property (A). This fact permits now to state that a basis is 1-greedy if and only if it is 1-almost greedy and 1-quasi-greedy. As a by-product of our work we also provide a tight estimate of the almost greedy constant of a basis in the non-isometric case.
机构:
Univ Autonoma Madrid, Dept Math, E-28049 Madrid, SpainUniv Autonoma Madrid, Dept Math, E-28049 Madrid, Spain
Kazarian, K.
Temlyakov, V. N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Carolina, Dept Math, Columbia, SC 29208 USA
VA Steklov Math Inst, Moscow 119991, RussiaUniv Autonoma Madrid, Dept Math, E-28049 Madrid, Spain
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, IMAS UBA CONICET Pab1, RA-1428 Buenos Aires, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, IMAS UBA CONICET Pab1, RA-1428 Buenos Aires, Argentina
Berasategui, Miguel
Berna, Pablo M.
论文数: 0引用数: 0
h-index: 0
机构:
CUNEF Univ, Dept Metodos Cuantitat, Madrid 28040, SpainUniv Buenos Aires, Fac Ciencias Exactas & Nat, IMAS UBA CONICET Pab1, RA-1428 Buenos Aires, Argentina
Berna, Pablo M.
Chu, Hung Viet
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USAUniv Buenos Aires, Fac Ciencias Exactas & Nat, IMAS UBA CONICET Pab1, RA-1428 Buenos Aires, Argentina